DyStyle: Dynamic Neural Network for Multi-Attribute-Conditioned Style Editing

Related tags

Deep LearningDyStyle
Overview

DyStyle: Dynamic Neural Network for Multi-Attribute-Conditioned Style Editing

Figure: Joint multi-attribute edits using DyStyle model.

Great diversity and photorealism have been achieved by unconditional GAN frameworks such as StyleGAN and its variations. In the meantime, persistent efforts have been made to enhance the semantic controllability of StyleGANs. For example, a dozen of style manipulation methods have been recently proposed to perform attribute-conditioned style editing. Although some of these methods work well in manipulating the style codes along one attribute, the control accuracy when jointly manipulating multiple attributes tends to be problematic. To address these limitations, we propose a Dynamic Style Manipulation Network (DyStyle) whose structure and parameters vary by input samples, to perform nonlinear and adaptive manipulation of latent codes for flexible and precise attribute control. Additionally, a novel easy-to-hard training procedure is introduced for efficient and stable training of the DyStyle network. Extensive experiments have been conducted on faces and other objects. As a result, our approach demonstrates fine-grained disentangled edits along multiple numeric and binary attributes. Qualitative and quantitative comparisons with existing style manipulation methods verify the superiority of our method in terms of the attribute control accuracy and identity preservation without compromising the photorealism. The advantage of our method is even more significant for joint multi-attribute control.

[paper]

Demo

Single Attribute edits

examples when editing facial expressions on real face.

examples when editing pupil color, hair color, mouth size and hair length on anime face.

examples when editing eye, mouth, yaw and age on cat face.

Multiple Attribute Edits

examples when editing both yaw and glass on real face.

images before editing

images after editing

Real photo editing reconstructed with pSp and edited with DyStyle.

Installation

  1. Clone this repo.
  2. This code require PyTorch, Python 3+. Please install the dependencies by
conda env create -f environment.yml

Editing Images with Pretrained Model

Before editing images, you need to prepare the checkpoint, GAN generator and edit config.

Then you can just run the following scripts,

sh run_test_adult.sh [device_id]
sh run_test_anime.sh [device_id]
sh run_test_cat.sh [device_id]
sh run_test_dog.sh [device_id]

Training DyStyle Model

Before training DyStyle Model, you need to prepare the GAN generator, Attribute Classifier and model config.

Then you can just run the following scripts,

sh run_train_adult.sh [device_id]
sh run_train_anime.sh [device_id]
sh run_train_cat.sh [device_id]
sh run_train_dog.sh [device_id]

License

©ByteDance, 2021. For academic and non-commercial use only.

Citation

To be updated.

Collect some papers about transformer with vision. Awesome Transformer with Computer Vision (CV)

Awesome Visual-Transformer Collect some Transformer with Computer-Vision (CV) papers. If you find some overlooked papers, please open issues or pull r

dkliang 2.8k Jan 08, 2023
Keep CALM and Improve Visual Feature Attribution

Keep CALM and Improve Visual Feature Attribution Jae Myung Kim1*, Junsuk Choe1*, Zeynep Akata2, Seong Joon Oh1† * Equal contribution † Corresponding a

NAVER AI 90 Dec 07, 2022
Keras code and weights files for popular deep learning models.

Trained image classification models for Keras THIS REPOSITORY IS DEPRECATED. USE THE MODULE keras.applications INSTEAD. Pull requests will not be revi

François Chollet 7.2k Dec 29, 2022
PyTorch-centric library for evaluating and enhancing the robustness of AI technologies

Responsible AI Toolbox A library that provides high-quality, PyTorch-centric tools for evaluating and enhancing both the robustness and the explainabi

24 Dec 22, 2022
deep-table implements various state-of-the-art deep learning and self-supervised learning algorithms for tabular data using PyTorch.

deep-table implements various state-of-the-art deep learning and self-supervised learning algorithms for tabular data using PyTorch.

63 Oct 17, 2022
Unofficial implementation of the Involution operation from CVPR 2021

involution_pytorch Unofficial PyTorch implementation of "Involution: Inverting the Inherence of Convolution for Visual Recognition" by Li et al. prese

Rishabh Anand 46 Dec 07, 2022
Mix3D: Out-of-Context Data Augmentation for 3D Scenes (3DV 2021)

Mix3D: Out-of-Context Data Augmentation for 3D Scenes (3DV 2021) Alexey Nekrasov*, Jonas Schult*, Or Litany, Bastian Leibe, Francis Engelmann Mix3D is

Alexey Nekrasov 189 Dec 26, 2022
Language model Prompt And Query Archive

LPAQA: Language model Prompt And Query Archive This repository contains data and code for the paper How Can We Know What Language Models Know? Install

127 Dec 20, 2022
Numbering permanent and deciduous teeth via deep instance segmentation in panoramic X-rays

Numbering permanent and deciduous teeth via deep instance segmentation in panoramic X-rays In this repo, you will find the instructions on how to requ

Intelligent Vision Research Lab 4 Jul 21, 2022
Speech Emotion Recognition with Fusion of Acoustic- and Linguistic-Feature-Based Decisions

APSIPA-SER-with-A-and-T This code is the implementation of Speech Emotion Recognition (SER) with acoustic and linguistic features. The network model i

kenro515 3 Jan 04, 2023
Liecasadi - liecasadi implements Lie groups operation written in CasADi

liecasadi liecasadi implements Lie groups operation written in CasADi, mainly di

Artificial and Mechanical Intelligence 14 Nov 05, 2022
DeepRec is a recommendation engine based on TensorFlow.

DeepRec Introduction DeepRec is a recommendation engine based on TensorFlow 1.15, Intel-TensorFlow and NVIDIA-TensorFlow. Background Sparse model is a

Alibaba 676 Jan 03, 2023
Official implementation for Multi-Modal Interaction Graph Convolutional Network for Temporal Language Localization in Videos

Multi-modal Interaction Graph Convolutioal Network for Temporal Language Localization in Videos Official implementation for Multi-Modal Interaction Gr

Zongmeng Zhang 15 Oct 18, 2022
Official PyTorch implementation of the paper: Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting.

Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting Official PyTorch implementation of the paper: Improving Graph Neural Net

Giorgos Bouritsas 58 Dec 31, 2022
[Link]deep_portfolo - Use Reforcemet earg ad Supervsed learg to Optmze portfolo allocato []

rl_portfolio This Repository uses Reinforcement Learning and Supervised learning to Optimize portfolio allocation. The goal is to make profitable agen

Deepender Singla 165 Dec 02, 2022
MINERVA: An out-of-the-box GUI tool for offline deep reinforcement learning

MINERVA is an out-of-the-box GUI tool for offline deep reinforcement learning, designed for everyone including non-programmers to do reinforcement learning as a tool.

Takuma Seno 80 Nov 06, 2022
A Python package to process & model ChEMBL data.

insilico: A Python package to process & model ChEMBL data. ChEMBL is a manually curated chemical database of bioactive molecules with drug-like proper

Steven Newton 0 Dec 09, 2021
SporeAgent: Reinforced Scene-level Plausibility for Object Pose Refinement

SporeAgent: Reinforced Scene-level Plausibility for Object Pose Refinement This repository implements the approach described in SporeAgent: Reinforced

Dominik Bauer 5 Jan 02, 2023
PyTorch implementation of Graph Convolutional Networks in Feature Space for Image Deblurring and Super-resolution, IJCNN 2021.

GCResNet PyTorch implementation of Graph Convolutional Networks in Feature Space for Image Deblurring and Super-resolution, IJCNN 2021. The code will

11 May 19, 2022
Display, filter and search log messages in your terminal

Textualog Display, filter and search logging messages in the terminal. This project is powered by rich and textual. Some of the ideas and code in this

Rik Huygen 24 Dec 10, 2022