[CVPR 2021] Forecasting the panoptic segmentation of future video frames

Overview

Panoptic Segmentation Forecasting

Colin Graber, Grace Tsai, Michael Firman, Gabriel Brostow, Alexander Schwing - CVPR 2021

[Link to paper]

Animated gif showing visual comparison of our model's results compared against the hybrid baseline

We propose to study the novel task of ‘panoptic segmentation forecasting’: given a set of observed frames, the goal is to forecast the panoptic segmentation for a set of unobserved frames. We also propose a first approach to forecasting future panoptic segmentations. In contrast to typical semantic forecasting, we model the motion of individual object instances and the background separately. This makes instance information persistent during forecasting, and allows us to understand the motion of each moving object.

Image presenting the model diagram

⚙️ Setup

Dependencies

Install the code using the following command: pip install -e ./

Data

  • To run this code, the gtFine_trainvaltest dataset will need to be downloaded from the Cityscapes website into the data/ directory.
  • The remainder of the required data can be downloaded using the script download_data.sh. By default, everything is downloaded into the data/ directory.
  • Training the background model requires generating a version of the semantic segmentation annotations where foreground regions have been removed. This can be done by running the script scripts/preprocessing/remove_fg_from_gt.sh.
  • Training the foreground model requires additionally downloading a pretrained MaskRCNN model. This can be found at this link. This should be saved as pretrained_models/fg/mask_rcnn_pretrain.pkl.
  • Training the background model requires additionally downloading a pretrained HarDNet model. This can be found at this link. This should be saved as pretrained_models/bg/hardnet70_cityscapes_model.pkl.

Running our code

The scripts directory contains scripts which can be used to train and evaluate the foreground, background, and egomotion models. Specifically:

  • scripts/odom/run_odom_train.sh trains the egomotion prediction model.
  • scripts/odom/export_odom.sh exports the odometry predictions, which can then be used during evaluation by other models
  • scripts/bg/run_bg_train.sh trains the background prediction model.
  • scripts/bg/run_export_bg_val.sh exports predictions make by the background using input reprojected point clouds which come from using predicted egomotion.
  • scripts/fg/run_fg_train.sh trains the foreground prediction model.
  • scripts/fg/run_fg_eval_panoptic.sh produces final panoptic semgnetation predictions based on the trained foreground model and exported background predictions. This also uses predicted egomotion as input.

We provide our pretrained foreground, background, and egomotion prediction models. The data downloading script additionally downloads these models into the directory pretrained_models/

✏️ 📄 Citation

If you found our work relevant to yours, please consider citing our paper:

@inproceedings{graber-2021-panopticforecasting,
 title   = {Panoptic Segmentation Forecasting},
 author  = {Colin Graber and
            Grace Tsai and
            Michael Firman and
            Gabriel Brostow and
            Alexander Schwing},
 booktitle = {Computer Vision and Pattern Recognition ({CVPR})},
 year = {2021}
}

👩‍⚖️ License

Copyright © Niantic, Inc. 2021. Patent Pending. All rights reserved. Please see the license file for terms.

Owner
Niantic Labs
Building technologies and ideas that move us
Niantic Labs
Implementation of the paper "Fine-Tuning Transformers: Vocabulary Transfer"

Transformer-vocabulary-transfer Implementation of the paper "Fine-Tuning Transfo

LEYA 13 Nov 30, 2022
This is the dataset for testing the robustness of various VO/VIO methods

KAIST VIO dataset This is the dataset for testing the robustness of various VO/VIO methods You can download the whole dataset on KAIST VIO dataset Ind

1 Sep 01, 2022
The final project of "Applying AI to 2D Medical Imaging Data" of "AI for Healthcare" nanodegree - Udacity.

Pneumonia Detection from X-Rays Project Overview In this project, you will apply the skills that you have acquired in this 2D medical imaging course t

Omar Laham 1 Jan 14, 2022
GAN JAX - A toy project to generate images from GANs with JAX

GAN JAX - A toy project to generate images from GANs with JAX This project aims to bring the power of JAX, a Python framework developped by Google and

Valentin Goldité 14 Nov 29, 2022
In this work, we will implement some basic but important algorithm of machine learning step by step.

WoRkS continued English 中文 Français Probability Density Estimation-Non-Parametric Methods(概率密度估计-非参数方法) 1. Kernel / k-Nearest Neighborhood Density Est

liziyu0104 1 Dec 30, 2021
Implementation of "Large Steps in Inverse Rendering of Geometry"

Large Steps in Inverse Rendering of Geometry ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia), December 2021. Baptiste Nicolet · Alec Jacob

RGL: Realistic Graphics Lab 274 Jan 06, 2023
SuperSDR: multiplatform KiwiSDR + CAT transceiver integrator

SuperSDR SuperSDR integrates a realtime spectrum waterfall and audio receive from any KiwiSDR around the world, together with a local (or remote) cont

Marco Cogoni 30 Nov 29, 2022
Video Representation Learning by Recognizing Temporal Transformations. In ECCV, 2020.

Video Representation Learning by Recognizing Temporal Transformations [Project Page] Simon Jenni, Givi Meishvili, and Paolo Favaro. In ECCV, 2020. Thi

Simon Jenni 46 Nov 14, 2022
[NeurIPS 2021] "G-PATE: Scalable Differentially Private Data Generator via Private Aggregation of Teacher Discriminators"

G-PATE This is the official code base for our NeurIPS 2021 paper: "G-PATE: Scalable Differentially Private Data Generator via Private Aggregation of T

AI Secure 14 Oct 12, 2022
This is the repository of the NeurIPS 2021 paper "Curriculum Disentangled Recommendation withNoisy Multi-feedback"

Curriculum_disentangled_recommendation This is the repository of the NeurIPS 2021 paper "Curriculum Disentangled Recommendation with Noisy Multi-feedb

14 Dec 20, 2022
Distance correlation and related E-statistics in Python

dcor dcor: distance correlation and related E-statistics in Python. E-statistics are functions of distances between statistical observations in metric

Carlos Ramos Carreño 108 Dec 27, 2022
Building blocks for uncertainty-aware cycle consistency presented at NeurIPS'21.

UncertaintyAwareCycleConsistency This repository provides the building blocks and the API for the work presented in the NeurIPS'21 paper Robustness vi

EML Tübingen 19 Dec 12, 2022
Weakly Supervised Learning of Rigid 3D Scene Flow

Weakly Supervised Learning of Rigid 3D Scene Flow This repository provides code and data to train and evaluate a weakly supervised method for rigid 3D

Zan Gojcic 124 Dec 27, 2022
Anonymous implementation of KSL

k-Step Latent (KSL) Implementation of k-Step Latent (KSL) in PyTorch. Representation Learning for Data-Efficient Reinforcement Learning [Paper] Code i

1 Nov 10, 2021
Adjusting for Autocorrelated Errors in Neural Networks for Time Series

Adjusting for Autocorrelated Errors in Neural Networks for Time Series This repository is the official implementation of the paper "Adjusting for Auto

Fan-Keng Sun 51 Nov 05, 2022
PPO Lagrangian in JAX

PPO Lagrangian in JAX This repository implements PPO in JAX. Implementation is tested on the safety-gym benchmark. Usage Install dependencies using th

Karush Suri 2 Sep 14, 2022
Fader Networks: Manipulating Images by Sliding Attributes - NIPS 2017

FaderNetworks PyTorch implementation of Fader Networks (NIPS 2017). Fader Networks can generate different realistic versions of images by modifying at

Facebook Research 753 Dec 23, 2022
A general-purpose programming language, focused on simplicity, safety and stability.

The Rivet programming language A general-purpose programming language, focused on simplicity, safety and stability. Rivet's goal is to be a very power

The Rivet programming language 17 Dec 29, 2022
RefineNet: Multi-Path Refinement Networks for High-Resolution Semantic Segmentation

Multipath RefineNet A MATLAB based framework for semantic image segmentation and general dense prediction tasks on images. This is the source code for

Guosheng Lin 575 Dec 06, 2022
Official implementation of "Watermarking Images in Self-Supervised Latent-Spaces"

🔍 Watermarking Images in Self-Supervised Latent-Spaces PyTorch implementation and pretrained models for the paper. For details, see Watermarking Imag

Meta Research 32 Dec 13, 2022