GeDML is an easy-to-use generalized deep metric learning library

Overview

Logo

Documentation build

News

  • [2021-9-6]: v0.0.0 has been released.

Introduction

GeDML is an easy-to-use generalized deep metric learning library, which contains:

  • State-of-the-art DML algorithms: We contrain 18+ losses functions and 6+ sampling strategies, and divide these algorithms into three categories (i.e., collectors, selectors, and losses).
  • Bridge bewteen DML and SSL: We attempt to bridge the gap between deep metric learning and self-supervised learning through specially designed modules, such as collectors.
  • Auxiliary modules to assist in building: We also encapsulates the upper interface for users to start programs quickly and separates the codes and configs for managing hyper-parameters conveniently.

Installation

Pip

pip install gedml

Framework

This project is modular in design. The pipeline diagram is as follows:

Pipeline

Code structure

  • _debug: Debug files.
  • demo: Demos of configuration files.
  • docs: Documentation.
  • src: Source code.
    • core: Losses, selectors, collectors, etc.
    • client: Tmux manager.
    • config: Config files including link, convert, assert and params.
    • launcher: Manager, Trainer, Tester, etc.
    • recorder: Recorder.

Method

Collectors

method description
BaseCollector Base class
DefaultCollector Do nothing
ProxyCollector Maintain a set of proxies
MoCoCollector paper: Momentum Contrast for Unsupervised Visual Representation Learning
SimSiamCollector paper: Exploring Simple Siamese Representation Learning
HDMLCollector paper: Hardness-Aware Deep Metric Learning
DAMLCollector paper: Deep Adversarial Metric Learning
DVMLCollector paper: Deep Variational Metric Learning

Losses

classifier-based

method description
CrossEntropyLoss Cross entropy loss for unsupervised methods
LargeMarginSoftmaxLoss paper: Large-Margin Softmax Loss for Convolutional Neural Networks
ArcFaceLoss paper: ArcFace: Additive Angular Margin Loss for Deep Face Recognition
CosFaceLoss paper: CosFace: Large Margin Cosine Loss for Deep Face Recognition

pair-based

method description
ContrastiveLoss paper: Learning a Similarity Metric Discriminatively, with Application to Face Verification
MarginLoss paper: Sampling Matters in Deep Embedding Learning
TripletLoss paper: Learning local feature descriptors with triplets and shallow convolutional neural networks
AngularLoss paper: Deep Metric Learning with Angular Loss
CircleLoss paper: Circle Loss: A Unified Perspective of Pair Similarity Optimization
FastAPLoss paper: Deep Metric Learning to Rank
LiftedStructureLoss paper: Deep Metric Learning via Lifted Structured Feature Embedding
MultiSimilarityLoss paper: Multi-Similarity Loss With General Pair Weighting for Deep Metric Learning
NPairLoss paper: Improved Deep Metric Learning with Multi-class N-pair Loss Objective
SignalToNoiseRatioLoss paper: Signal-To-Noise Ratio: A Robust Distance Metric for Deep Metric Learning
PosPairLoss paper: Exploring Simple Siamese Representation Learning

proxy-based

method description
ProxyLoss paper: No Fuss Distance Metric Learning Using Proxies
ProxyAnchorLoss paper: Proxy Anchor Loss for Deep Metric Learning
SoftTripleLoss paper: SoftTriple Loss: Deep Metric Learning Without Triplet Sampling

Selectors

method description
BaseSelector Base class
DefaultSelector Do nothing
DenseTripletSelector Select all triples
DensePairSelector Select all pairs

Quickstart

Please set the environment variable WORKSPACE first to indicate where to manage your project.

Initialization

Use ConfigHandler to create all objects.

config_handler = ConfigHandler()
config_handler.get_params_dict()
objects_dict = config_handler.create_all()

Start

Use manager to automatically call trainer and tester.

manager = utils.get_default(objects_dict, "managers")
manager.run()

Directly use trainer and tester.

trainer = utils.get_default(objects_dict, "trainers")
tester = utils.get_default(objects_dict, "testers")
recorder = utils.get_default(objects_dict, "recorders")

# start to train
utils.func_params_mediator(
    [objects_dict],
    trainer.__call__
)

# start to test
metrics = utils.func_params_mediator(
    [
        {"recorders": recorder},
        objects_dict,
    ],
    tester.__call__
)

Document

For more information, please refer to:

📖 👉 Docs

Some specific guidances:

Configs

We will continually update the optimal parameters of different configs in TsinghuaCloud

Code Reference

TODO:

  • assert parameters
  • distributed methods and Non-distributed methods!!!
  • write github action to automate unit-test, package publish and docs building.
  • add cross-validation splits protocol.
Owner
Borui Zhang
I am a first year Ph.D student in the Department of Automation at THU. My research direction is computer vision.
Borui Zhang
Adversarial Attacks are Reversible via Natural Supervision

Adversarial Attacks are Reversible via Natural Supervision ICCV2021 Citation @InProceedings{Mao_2021_ICCV, author = {Mao, Chengzhi and Chiquier

Computer Vision Lab at Columbia University 20 May 22, 2022
Repository for the paper "Online Domain Adaptation for Occupancy Mapping", RSS 2020

RSS 2020 - Online Domain Adaptation for Occupancy Mapping Repository for the paper "Online Domain Adaptation for Occupancy Mapping", Robotics: Science

Anthony 26 Sep 22, 2022
BasicVSR++: Improving Video Super-Resolution with Enhanced Propagation and Alignment

BasicVSR++: Improving Video Super-Resolution with Enhanced Propagation and Alignment

Holy Wu 35 Jan 01, 2023
Luminaire is a python package that provides ML driven solutions for monitoring time series data.

A hands-off Anomaly Detection Library Table of contents What is Luminaire Quick Start Time Series Outlier Detection Workflow Anomaly Detection for Hig

Zillow 670 Jan 02, 2023
​ This is the Pytorch implementation of Progressive Attentional Manifold Alignment.

PAMA This is the Pytorch implementation of Progressive Attentional Manifold Alignment. Requirements python 3.6 pytorch 1.2.0+ PIL, numpy, matplotlib C

98 Nov 15, 2022
In this project, we create and implement a deep learning library from scratch.

ARA In this project, we create and implement a deep learning library from scratch. Table of Contents Deep Leaning Library Table of Contents About The

22 Aug 23, 2022
An open source object detection toolbox based on PyTorch

MMDetection is an open source object detection toolbox based on PyTorch. It is a part of the OpenMMLab project.

Bo Chen 24 Dec 28, 2022
YKKDetector For Python

YKKDetector OpenCVを利用した機械学習データをもとに、VRChatのスクリーンショットなどからYKKさん(もとい「幽狐族のお姉様」)を検出できるソフトウェアです。 マニュアル こちらから実行環境のセットアップから解説する詳細なマニュアルをご覧いただけます。 ライセンス 本ソフトウェア

あんふぃとらいと 5 Dec 07, 2021
Categorizing comments on YouTube into different categories.

Youtube Comments Categorization This repo is for categorizing comments on a youtube video into different categories. negative (grievances, complaints,

Rhitik 5 Nov 26, 2022
DeepHyper: Scalable Asynchronous Neural Architecture and Hyperparameter Search for Deep Neural Networks

What is DeepHyper? DeepHyper is a software package that uses learning, optimization, and parallel computing to automate the design and development of

DeepHyper Team 214 Jan 08, 2023
Pytorch implementation for A-NeRF: Articulated Neural Radiance Fields for Learning Human Shape, Appearance, and Pose

A-NeRF: Articulated Neural Radiance Fields for Learning Human Shape, Appearance, and Pose Paper | Website | Data A-NeRF: Articulated Neural Radiance F

Shih-Yang Su 172 Dec 22, 2022
an Evolutionary Algorithm assisted GAN

EvoGAN an Evolutionary Algorithm assisted GAN ckpts

3 Oct 09, 2022
A distributed deep learning framework that supports flexible parallelization strategies.

FlexFlow FlexFlow is a deep learning framework that accelerates distributed DNN training by automatically searching for efficient parallelization stra

528 Dec 25, 2022
Implementation of temporal pooling methods studied in [ICIP'20] A Comparative Evaluation Of Temporal Pooling Methods For Blind Video Quality Assessment

Implementation of temporal pooling methods studied in [ICIP'20] A Comparative Evaluation Of Temporal Pooling Methods For Blind Video Quality Assessment

Zhengzhong Tu 5 Sep 16, 2022
The mini-MusicNet dataset

mini-MusicNet A music-domain dataset for multi-label classification Music transcription is sequence-to-sequence prediction problem: given an audio per

John Thickstun 4 Nov 09, 2022
Robust Self-augmentation for NER with Meta-reweighting

Robust Self-augmentation for NER with Meta-reweighting

Lam chi 17 Nov 22, 2022
This project aims to explore the deployment of Swin-Transformer based on TensorRT, including the test results of FP16 and INT8.

Swin Transformer This project aims to explore the deployment of SwinTransformer based on TensorRT, including the test results of FP16 and INT8. Introd

maggiez 87 Dec 21, 2022
Code associated with the paper "Deep Optics for Single-shot High-dynamic-range Imaging"

Deep Optics for Single-shot High-dynamic-range Imaging Code associated with the paper "Deep Optics for Single-shot High-dynamic-range Imaging" CVPR, 2

Stanford Computational Imaging Lab 40 Dec 12, 2022
This is an official implementation for "Video Swin Transformers".

Video Swin Transformer By Ze Liu*, Jia Ning*, Yue Cao, Yixuan Wei, Zheng Zhang, Stephen Lin and Han Hu. This repo is the official implementation of "V

Swin Transformer 981 Jan 03, 2023
Technical Analysis Indicators - Pandas TA is an easy to use Python 3 Pandas Extension with 130+ Indicators

Pandas TA - A Technical Analysis Library in Python 3 Pandas Technical Analysis (Pandas TA) is an easy to use library that leverages the Pandas package

Kevin Johnson 3.2k Jan 09, 2023