This is an (re-)implementation of DeepLab-ResNet in TensorFlow for semantic image segmentation on the PASCAL VOC dataset.

Overview

DeepLab-ResNet-TensorFlow

This is an (re-)implementation of DeepLab-ResNet in TensorFlow for semantic image segmentation on the PASCAL VOC dataset.

Updates

29 Jan, 2017:

  • Fixed the implementation of the batch normalisation layer: it now supports both the training and inference steps. If the flag --is-training is provided, the running means and variances will be updated; otherwise, they will be kept intact. The .ckpt files have been updated accordingly - to download please refer to the new link provided below.
  • Image summaries during the training process can now be seen using TensorBoard.
  • Fixed the evaluation procedure: the 'void' label (255) is now correctly ignored. As a result, the performance score on the validation set has increased to 80.1%.

Model Description

The DeepLab-ResNet is built on a fully convolutional variant of ResNet-101 with atrous (dilated) convolutions, atrous spatial pyramid pooling, and multi-scale inputs (not implemented here).

The model is trained on a mini-batch of images and corresponding ground truth masks with the softmax classifier at the top. During training, the masks are downsampled to match the size of the output from the network; during inference, to acquire the output of the same size as the input, bilinear upsampling is applied. The final segmentation mask is computed using argmax over the logits. Optionally, a fully-connected probabilistic graphical model, namely, CRF, can be applied to refine the final predictions. On the test set of PASCAL VOC, the model achieves 79.7% of mean intersection-over-union.

For more details on the underlying model please refer to the following paper:

@article{CP2016Deeplab,
  title={DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs},
  author={Liang-Chieh Chen and George Papandreou and Iasonas Kokkinos and Kevin Murphy and Alan L Yuille},
  journal={arXiv:1606.00915},
  year={2016}
}

Requirements

TensorFlow needs to be installed before running the scripts. TensorFlow 0.12 is supported; for TensorFlow 0.11 please refer to this branch.

To install the required python packages (except TensorFlow), run

pip install -r requirements.txt

or for a local installation

pip install -user -r requirements.txt

Caffe to TensorFlow conversion

To imitate the structure of the model, we have used .caffemodel files provided by the authors. The conversion has been performed using Caffe to TensorFlow with an additional configuration for atrous convolution and batch normalisation (since the batch normalisation provided by Caffe-tensorflow only supports inference). There is no need to perform the conversion yourself as you can download the already converted models - deeplab_resnet.ckpt (pre-trained) and deeplab_resnet_init.ckpt (the last layers are randomly initialised) - here.

Nevertheless, it is easy to perform the conversion manually, given that the appropriate .caffemodel file has been downloaded, and Caffe to TensorFlow dependencies have been installed. The Caffe model definition is provided in misc/deploy.prototxt. To extract weights from .caffemodel, run the following:

python convert.py /path/to/deploy/prototxt --caffemodel /path/to/caffemodel --data-output-path /where/to/save/numpy/weights

As a result of running the command above, the model weights will be stored in /where/to/save/numpy/weights. To convert them to the native TensorFlow format (.ckpt), simply execute:

python npy2ckpt.py /where/to/save/numpy/weights --save-dir=/where/to/save/ckpt/weights

Dataset and Training

To train the network, one can use the augmented PASCAL VOC 2012 dataset with 10582 images for training and 1449 images for validation.

The training script allows to monitor the progress in the optimisation process using TensorBoard's image summary. Besides that, one can also exploit random scaling of the inputs during training as a means for data augmentation. For example, to train the model from scratch with random scale turned on, simply run:

python train.py --random-scale

To see the documentation on each of the training settings run the following:

python train.py --help

An additional script, fine_tune.py, demonstrates how to train only the last layers of the network.

Evaluation

The single-scale model shows 80.1% mIoU on the Pascal VOC 2012 validation dataset. No post-processing step with CRF is applied.

The following command provides the description of each of the evaluation settings:

python evaluate.py --help

Inference

To perform inference over your own images, use the following command:

python inference.py /path/to/your/image /path/to/ckpt/file

This will run the forward pass and save the resulted mask with this colour map:

Missing features

At the moment, the post-processing step with CRF is not implemented. Besides that, multi-scale inputs are missing, as well. No weight regularisation is applied.

Other implementations

NVIDIA container runtime

nvidia-container-runtime A modified version of runc adding a custom pre-start hook to all containers. If environment variable NVIDIA_VISIBLE_DEVICES i

NVIDIA Corporation 938 Jan 06, 2023
(ICONIP 2020) MobileHand: Real-time 3D Hand Shape and Pose Estimation from Color Image

MobileHand: Real-time 3D Hand Shape and Pose Estimation from Color Image This repo contains the source code for MobileHand, real-time estimation of 3D

90 Dec 12, 2022
code for Fast Point Cloud Registration with Optimal Transport

robot This is the repository for the paper "Accurate Point Cloud Registration with Robust Optimal Transport". We are in the process of refactoring the

28 Jan 04, 2023
Differentiable simulation for system identification and visuomotor control

gradsim gradSim: Differentiable simulation for system identification and visuomotor control gradSim is a unified differentiable rendering and multiphy

105 Dec 18, 2022
using STGCN to achieve egg classification task

EEG Classification   The task requires us to classify electroencephalography(EEG) into six categories, including human body, human face, animal body,

4 Jun 13, 2022
Imagededup - 😎 Finding duplicate images made easy

imagededup is a python package that simplifies the task of finding exact and near duplicates in an image collection.

idealo 4.3k Jan 07, 2023
Extreme Rotation Estimation using Dense Correlation Volumes

Extreme Rotation Estimation using Dense Correlation Volumes This repository contains a PyTorch implementation of the paper: Extreme Rotation Estimatio

Ruojin Cai 29 Nov 18, 2022
PyTorch implementation of DARDet: A Dense Anchor-free Rotated Object Detector in Aerial Images

DARDet PyTorch implementation of "DARDet: A Dense Anchor-free Rotated Object Detector in Aerial Images", [pdf]. Highlights: 1. We develop a new dense

41 Oct 23, 2022
PrimitiveNet: Primitive Instance Segmentation with Local Primitive Embedding under Adversarial Metric (ICCV 2021)

PrimitiveNet Source code for the paper: Jingwei Huang, Yanfeng Zhang, Mingwei Sun. [PrimitiveNet: Primitive Instance Segmentation with Local Primitive

Jingwei Huang 47 Dec 06, 2022
[ICCV 2021] Encoder-decoder with Multi-level Attention for 3D Human Shape and Pose Estimation

MAED: Encoder-decoder with Multi-level Attention for 3D Human Shape and Pose Estimation Getting Started Our codes are implemented and tested with pyth

ZiNiU WaN 176 Dec 15, 2022
PSPNet in Chainer

PSPNet This is an unofficial implementation of Pyramid Scene Parsing Network (PSPNet) in Chainer. Training Requirement Python 3.4.4+ Chainer 3.0.0b1+

Shunta Saito 76 Dec 12, 2022
Vehicles Counting using YOLOv4 + DeepSORT + Flask + Ngrok

A project for counting vehicles using YOLOv4 + DeepSORT + Flask + Ngrok

Duong Tran Thanh 37 Dec 16, 2022
Source code of our BMVC 2021 paper: AniFormer: Data-driven 3D Animation with Transformer

AniFormer This is the PyTorch implementation of our BMVC 2021 paper AniFormer: Data-driven 3D Animation with Transformer. Haoyu Chen, Hao Tang, Nicu S

24 Nov 02, 2022
Python Rapid Artificial Intelligence Ab Initio Molecular Dynamics

Python Rapid Artificial Intelligence Ab Initio Molecular Dynamics

14 Nov 06, 2022
HiFT: Hierarchical Feature Transformer for Aerial Tracking (ICCV2021)

HiFT: Hierarchical Feature Transformer for Aerial Tracking Ziang Cao, Changhong Fu, Junjie Ye, Bowen Li, and Yiming Li Our paper is Accepted by ICCV 2

Intelligent Vision for Robotics in Complex Environment 55 Nov 23, 2022
PyTorch implementation of a collections of scalable Video Transformer Benchmarks.

PyTorch implementation of Video Transformer Benchmarks This repository is mainly built upon Pytorch and Pytorch-Lightning. We wish to maintain a colle

Xin Ma 156 Jan 08, 2023
Wider or Deeper: Revisiting the ResNet Model for Visual Recognition

ademxapp Visual applications by the University of Adelaide In designing our Model A, we did not over-optimize its structure for efficiency unless it w

Zifeng Wu 338 Dec 12, 2022
Code/data of the paper "Hand-Object Contact Prediction via Motion-Based Pseudo-Labeling and Guided Progressive Label Correction" (BMVC2021)

Hand-Object Contact Prediction (BMVC2021) This repository contains the code and data for the paper "Hand-Object Contact Prediction via Motion-Based Ps

Takuma Yagi 13 Nov 07, 2022
A package, and script, to perform imaging transcriptomics on a neuroimaging scan.

Imaging Transcriptomics Imaging transcriptomics is a methodology that allows to identify patterns of correlation between gene expression and some prop

Alessio Giacomel 10 Dec 27, 2022
Checkout some cool self-projects you can try your hands on to curb your boredom this December!

SoC-Winter Checkout some cool self-projects you can try your hands on to curb your boredom this December! These are short projects that you can do you

Web and Coding Club, IIT Bombay 29 Nov 08, 2022