AI grand challenge 2020 Repo (Speech Recognition Track)

Overview

KorBERT를 활용한 한국어 텍스트 기반 위협 상황인지(2020 인공지능 그랜드 챌린지)

본 프로젝트는 ETRI에서 제공된 한국어 korBERT 모델을 활용하여 폭력 기반 한국어 텍스트를 분류하는 다양한 분류 모델들을 제공합니다.

본 개발자들이 참여한 2020 인공지능 그랜드 챌린지 4차 대회는 인공지능 기술을 활용하여 다양한 지역사회의 국민생활 및 사회현안을 대응하는 과제입니다. 그중 음성인지 트랙은 음성 클립에서 위협상황을 검출하고 해당 위협 상황을 구분하는 것이 목표로 하고 있습니다. 아래의 표는 본 대회에서 정의한 4가지의 폭력 Class이며 아래의 4가지 폭력 Class 외에 비폭력 Class가 추가되어 총 5개 Class의 폭력 또는 비폭력을 분류하는 것이 주된 목적입니다.

< 음성인지 분류대상 정의 >

추가적으로, 본 개발자들은 ETRI에서 작성된 사용협약서에 준수하여 pretrained 모델 및 정보에 관한 내용은 공개하지 않습니다. 해당 프로젝트를 쉽게 활용하기 위해서는 ETRI에서 제공하는 API를 활용하시면 되며, 다음 링크에서 서약서를 작성 후 키와 코드를 다운받으시면 되십니다. 본 프로젝트는 대회에서 적용한 여러 분류 모델들을 제공하며 앞서 다운로드한 ETRI에서 제공된 형태소 분석기와 토큰화를 사용하여 쉽게 실습할 수 있습니다.

분류 모델

Requirements

Python 3.7

Pytorch == 1.5.0

boto3

botocore

tqdm

requests

Models

본 프로젝트는 4가지의 분류 모델(MLP, CNN, LSTM, Bi-LSTM)을 활용하였습니다. 아래는 활용된 모델들의 전체적인 시나리오를 보여주는 개요도입니다.

1. MLP

< 활용된 MLP 모델 >

2. CNN

CNN은 해당 논문을 참고하였습니다. 더 자세한 내용은 논문에서 확인할 수 있습니다.

< 활용된 CNN 모델 >

3. LSTM

< 활용된 LSTM 모델 >

4. Bi-LSTM

< 활용된 Bi-LSTM 모델 >

Results

본 대회에서는 분류 결과를 Macro-F1 score에 의해 평가하였으며, Macro-F1 score는 아래와 같이 정의합니다. 이때, i는 각각의 폭력 및 비폭력 Class를 의미합니다.

< Macro-F1 Score >

위 식을 토대로, 저희의 분류 아래의 결과는 2020 인공지능 그랜드 챌린지 4차 대회 음성인지 트랙에서 본 팀에 대한 결과이며, 주최 측에서 테스트 데이터는 공개하지 않아 확인할 수 없습니다.

Model MLP [1] CNN [2] LSTM [3] Bi-LSTM [4]
Macro F1-Score 0.7029 0.615 0.7157 0.6935
Owner
Young-Seok Choi
Young-Seok Choi
Semantic Edge Detection with Diverse Deep Supervision

Semantic Edge Detection with Diverse Deep Supervision This repository contains the code for our IJCV paper: "Semantic Edge Detection with Diverse Deep

Yun Liu 12 Dec 31, 2022
Source code for GNN-LSPE (Graph Neural Networks with Learnable Structural and Positional Representations)

Graph Neural Networks with Learnable Structural and Positional Representations Source code for the paper "Graph Neural Networks with Learnable Structu

Vijay Prakash Dwivedi 180 Dec 22, 2022
Code for Fully Context-Aware Image Inpainting with a Learned Semantic Pyramid

SPN: Fully Context-Aware Image Inpainting with a Learned Semantic Pyramid Code for Fully Context-Aware Image Inpainting with a Learned Semantic Pyrami

12 Jun 27, 2022
Non-Attentive-Tacotron - This is Pytorch Implementation of Google's Non-attentive Tacotron.

Non-attentive Tacotron - PyTorch Implementation This is Pytorch Implementation of Google's Non-attentive Tacotron, text-to-speech system. There is som

Jounghee Kim 46 Dec 19, 2022
Teaching end to end workflow of deep learning

Deep-Education This repository is now available for public use for teaching end to end workflow of deep learning. This implies that learners/researche

Data Lab at College of William and Mary 2 Sep 26, 2022
Implementation of the paper ''Implicit Feature Refinement for Instance Segmentation''.

Implicit Feature Refinement for Instance Segmentation This repository is an official implementation of the ACM Multimedia 2021 paper Implicit Feature

Lufan Ma 17 Dec 28, 2022
IAST: Instance Adaptive Self-training for Unsupervised Domain Adaptation (ECCV 2020)

This repo is the official implementation of our paper "Instance Adaptive Self-training for Unsupervised Domain Adaptation". The purpose of this repo is to better communicate with you and respond to y

CVSM Group - email: <a href=[email protected]"> 84 Dec 12, 2022
A Vision Transformer approach that uses concatenated query and reference images to learn the relationship between query and reference images directly.

A Vision Transformer approach that uses concatenated query and reference images to learn the relationship between query and reference images directly.

24 Dec 13, 2022
Label-Free Model Evaluation with Semi-Structured Dataset Representations

Label-Free Model Evaluation with Semi-Structured Dataset Representations Prerequisites This code uses the following libraries Python 3.7 NumPy PyTorch

8 Oct 06, 2022
This is an official implementation for "SimMIM: A Simple Framework for Masked Image Modeling".

Project This repo has been populated by an initial template to help get you started. Please make sure to update the content to build a great experienc

Microsoft 674 Dec 26, 2022
Winners of the Facebook Image Similarity Challenge

Winners of the Facebook Image Similarity Challenge

DrivenData 111 Jan 05, 2023
gACSON software for visualization, processing and analysis of three-dimensional electron microscopy images

gACSON gACSON software is to visualize, segment, and analyze the morphology of neurons in three-dimensional electron microscopy images. If you use any

Andrea Behanova 2 May 31, 2022
Open source person re-identification library in python

Open-ReID Open-ReID is a lightweight library of person re-identification for research purpose. It aims to provide a uniform interface for different da

Tong Xiao 1.3k Jan 01, 2023
[CVPR 2021] A Peek Into the Reasoning of Neural Networks: Interpreting with Structural Visual Concepts

Visual-Reasoning-eXplanation [CVPR 2021 A Peek Into the Reasoning of Neural Networks: Interpreting with Structural Visual Concepts] Project Page | Vid

Andy_Ge 54 Dec 21, 2022
Training, generation, and analysis code for Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics

Location-Aware Generative Adversarial Networks (LAGAN) for Physics Synthesis This repository contains all the code used in L. de Oliveira (@lukedeo),

Deep Learning for HEP 57 Oct 22, 2022
N-Omniglot is a large neuromorphic few-shot learning dataset

N-Omniglot [Paper] || [Dataset] N-Omniglot is a large neuromorphic few-shot learning dataset. It reconstructs strokes of Omniglot as videos and uses D

11 Dec 05, 2022
Code for generating the figures in the paper "Capacity of Group-invariant Linear Readouts from Equivariant Representations: How Many Objects can be Linearly Classified Under All Possible Views?"

Code for running simulations for the paper "Capacity of Group-invariant Linear Readouts from Equivariant Representations: How Many Objects can be Lin

Matthew Farrell 1 Nov 22, 2022
Xview3 solution - XView3 challenge, 2nd place solution

Xview3, 2nd place solution https://iuu.xview.us/ test split aggregate score publ

Selim Seferbekov 24 Nov 23, 2022
ICCV2021 Oral SA-ConvONet: Sign-Agnostic Optimization of Convolutional Occupancy Networks

Sign-Agnostic Convolutional Occupancy Networks Paper | Supplementary | Video | Teaser Video | Project Page This repository contains the implementation

63 Nov 18, 2022
The implementation of the paper "A Deep Feature Aggregation Network for Accurate Indoor Camera Localization".

A Deep Feature Aggregation Network for Accurate Indoor Camera Localization This is the PyTorch implementation of our paper "A Deep Feature Aggregation

9 Dec 09, 2022