SPTAG: A library for fast approximate nearest neighbor search

Overview

SPTAG: A library for fast approximate nearest neighbor search

MIT licensed Build status

SPTAG

SPTAG (Space Partition Tree And Graph) is a library for large scale vector approximate nearest neighbor search scenario released by Microsoft Research (MSR) and Microsoft Bing.

architecture

Introduction

This library assumes that the samples are represented as vectors and that the vectors can be compared by L2 distances or cosine distances. Vectors returned for a query vector are the vectors that have smallest L2 distance or cosine distances with the query vector.

SPTAG provides two methods: kd-tree and relative neighborhood graph (SPTAG-KDT) and balanced k-means tree and relative neighborhood graph (SPTAG-BKT). SPTAG-KDT is advantageous in index building cost, and SPTAG-BKT is advantageous in search accuracy in very high-dimensional data.

How it works

SPTAG is inspired by the NGS approach [WangL12]. It contains two basic modules: index builder and searcher. The RNG is built on the k-nearest neighborhood graph [WangWZTG12, WangWJLZZH14] for boosting the connectivity. Balanced k-means trees are used to replace kd-trees to avoid the inaccurate distance bound estimation in kd-trees for very high-dimensional vectors. The search begins with the search in the space partition trees for finding several seeds to start the search in the RNG. The searches in the trees and the graph are iteratively conducted.

Highlights

  • Fresh update: Support online vector deletion and insertion
  • Distributed serving: Search over multiple machines

Build

Requirements

  • swig >= 3.0
  • cmake >= 3.12.0
  • boost >= 1.67.0

Fast clone

set GIT_LFS_SKIP_SMUDGE=1
git clone https://github.com/microsoft/SPTAG

OR

git config --global filter.lfs.smudge "git-lfs smudge --skip -- %f"
git config --global filter.lfs.process "git-lfs filter-process --skip"

Install

For Linux:

mkdir build
cd build && cmake .. && make

It will generate a Release folder in the code directory which contains all the build targets.

For Windows:

mkdir build
cd build && cmake -A x64 ..

It will generate a SPTAGLib.sln in the build directory. Compiling the ALL_BUILD project in the Visual Studio (at least 2019) will generate a Release directory which contains all the build targets.

For detailed instructions on installing Windows binaries, please see here

Using Docker:

docker build -t sptag .

Will build a docker container with binaries in /app/Release/.

Verify

Run the SPTAGTest (or Test.exe) in the Release folder to verify all the tests have passed.

Usage

The detailed usage can be found in Get started. There is also an end-to-end tutorial for building vector search online service using Python Wrapper in Python Tutorial. The detailed parameters tunning can be found in Parameters.

References

Please cite SPTAG in your publications if it helps your research:

@inproceedings{ChenW21,
  author = {Qi Chen and 
            Bing Zhao and 
            Haidong Wang and 
            Mingqin Li and 
            Chuanjie Liu and 
            Zengzhong Li and 
            Mao Yang and 
            Jingdong Wang},
  title = {SPANN: Highly-efficient Billion-scale Approximate Nearest Neighbor Search},
  booktitle = {35th Conference on Neural Information Processing Systems (NeurIPS 2021)},
  year = {2021}
}

@manual{ChenW18,
  author    = {Qi Chen and
               Haidong Wang and
               Mingqin Li and 
               Gang Ren and
               Scarlett Li and
               Jeffery Zhu and
               Jason Li and
               Chuanjie Liu and
               Lintao Zhang and
               Jingdong Wang},
  title     = {SPTAG: A library for fast approximate nearest neighbor search},
  url       = {https://github.com/Microsoft/SPTAG},
  year      = {2018}
}

@inproceedings{WangL12,
  author    = {Jingdong Wang and
               Shipeng Li},
  title     = {Query-driven iterated neighborhood graph search for large scale indexing},
  booktitle = {ACM Multimedia 2012},
  pages     = {179--188},
  year      = {2012}
}

@inproceedings{WangWZTGL12,
  author    = {Jing Wang and
               Jingdong Wang and
               Gang Zeng and
               Zhuowen Tu and
               Rui Gan and
               Shipeng Li},
  title     = {Scalable k-NN graph construction for visual descriptors},
  booktitle = {CVPR 2012},
  pages     = {1106--1113},
  year      = {2012}
}

@article{WangWJLZZH14,
  author    = {Jingdong Wang and
               Naiyan Wang and
               You Jia and
               Jian Li and
               Gang Zeng and
               Hongbin Zha and
               Xian{-}Sheng Hua},
  title     = {Trinary-Projection Trees for Approximate Nearest Neighbor Search},
  journal   = {{IEEE} Trans. Pattern Anal. Mach. Intell.},
  volume    = {36},
  number    = {2},
  pages     = {388--403},
  year      = {2014
}

Contribute

This project welcomes contributions and suggestions from all the users.

We use GitHub issues for tracking suggestions and bugs.

License

The entire codebase is under MIT license

Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
E2EC: An End-to-End Contour-based Method for High-Quality High-Speed Instance Segmentation

E2EC: An End-to-End Contour-based Method for High-Quality High-Speed Instance Segmentation E2EC: An End-to-End Contour-based Method for High-Quality H

zhangtao 146 Dec 29, 2022
(Py)TOD: Tensor-based Outlier Detection, A General GPU-Accelerated Framework

(Py)TOD: Tensor-based Outlier Detection, A General GPU-Accelerated Framework Background: Outlier detection (OD) is a key data mining task for identify

Yue Zhao 127 Jan 05, 2023
Reviatalizing Optimization for 3D Human Pose and Shape Estimation: A Sparse Constrained Formulation

Reviatalizing Optimization for 3D Human Pose and Shape Estimation: A Sparse Constrained Formulation This is the implementation of the approach describ

Taosha Fan 47 Nov 15, 2022
An interactive DNN Model deployed on web that predicts the chance of heart failure for a patient with an accuracy of 98%

Heart Failure Predictor About A Web UI deployed Dense Neural Network Model Made using Tensorflow that predicts whether the patient is healthy or has c

Adit Ahmedabadi 0 Jan 09, 2022
CLIP-GEN: Language-Free Training of a Text-to-Image Generator with CLIP

CLIP-GEN [简体中文][English] 本项目在萤火二号集群上用 PyTorch 实现了论文 《CLIP-GEN: Language-Free Training of a Text-to-Image Generator with CLIP》。 CLIP-GEN 是一个 Language-F

75 Dec 29, 2022
Perform Linear Classification with Multi-way Data

MultiwayClassification This is an R package to perform linear classification for data with multi-way structure. The distance-weighted discrimination (

Eric F. Lock 2 Dec 15, 2020
Immortal tracker

Immortal_tracker Prerequisite Our code is tested for Python 3.6. To install required liabraries: pip install -r requirements.txt Waymo Open Dataset P

74 Dec 03, 2022
Grammar Induction using a Template Tree Approach

Gitta Gitta ("Grammar Induction using a Template Tree Approach") is a method for inducing context-free grammars. It performs particularly well on data

Thomas Winters 36 Nov 15, 2022
A Conditional Point Diffusion-Refinement Paradigm for 3D Point Cloud Completion

A Conditional Point Diffusion-Refinement Paradigm for 3D Point Cloud Completion This repo intends to release code for our work: Zhaoyang Lyu*, Zhifeng

Zhaoyang Lyu 68 Jan 03, 2023
This is the official code for the paper "Tracker Meets Night: A Transformer Enhancer for UAV Tracking".

SCT This is the official code for the paper "Tracker Meets Night: A Transformer Enhancer for UAV Tracking" The spatial-channel Transformer (SCT) enhan

Intelligent Vision for Robotics in Complex Environment 27 Nov 23, 2022
Softlearning is a reinforcement learning framework for training maximum entropy policies in continuous domains. Includes the official implementation of the Soft Actor-Critic algorithm.

Softlearning Softlearning is a deep reinforcement learning toolbox for training maximum entropy policies in continuous domains. The implementation is

Robotic AI & Learning Lab Berkeley 997 Dec 30, 2022
source code the paper Fast and Robust Iterative Closet Point.

Fast-Robust-ICP This repository includes the source code the paper Fast and Robust Iterative Closet Point. Authors: Juyong Zhang, Yuxin Yao, Bailin De

yaoyuxin 320 Dec 28, 2022
Character-Input - Create a program that asks the user to enter their name and their age

Character-Input Create a program that asks the user to enter their name and thei

PyLaboratory 0 Feb 06, 2022
[ICCV 2021] Group-aware Contrastive Regression for Action Quality Assessment

CoRe Created by Xumin Yu*, Yongming Rao*, Wenliang Zhao, Jiwen Lu, Jie Zhou This is the PyTorch implementation for ICCV paper Group-aware Contrastive

Xumin Yu 31 Dec 24, 2022
Bayesian dessert for Lasagne

Gelato Bayesian dessert for Lasagne Recent results in Bayesian statistics for constructing robust neural networks have proved that it is one of the be

Maxim Kochurov 84 May 11, 2020
Image-based Navigation in Real-World Environments via Multiple Mid-level Representations: Fusion Models Benchmark and Efficient Evaluation

Image-based Navigation in Real-World Environments via Multiple Mid-level Representations: Fusion Models Benchmark and Efficient Evaluation This reposi

First Person Vision @ Image Processing Laboratory - University of Catania 1 Aug 21, 2022
SAPIEN Manipulation Skill Benchmark

ManiSkill Benchmark SAPIEN Manipulation Skill Benchmark (abbreviated as ManiSkill, pronounced as "Many Skill") is a large-scale learning-from-demonstr

Hao Su's Lab, UCSD 107 Jan 08, 2023
Repository for the paper : Meta-FDMixup: Cross-Domain Few-Shot Learning Guided byLabeled Target Data

1 Meta-FDMIxup Repository for the paper : Meta-FDMixup: Cross-Domain Few-Shot Learning Guided byLabeled Target Data. (ACM MM 2021) paper News! the rep

Fu Yuqian 44 Nov 18, 2022
YOLOX-Paddle - A reproduction of YOLOX by PaddlePaddle

YOLOX-Paddle A reproduction of YOLOX by PaddlePaddle 数据集准备 下载COCO数据集,准备为如下路径 /ho

QuanHao Guo 6 Dec 18, 2022
This is the official repository of XVFI (eXtreme Video Frame Interpolation)

XVFI This is the official repository of XVFI (eXtreme Video Frame Interpolation), https://arxiv.org/abs/2103.16206 Last Update: 20210607 We provide th

Jihyong Oh 195 Dec 29, 2022