MASS (Mueen's Algorithm for Similarity Search) - a python 2 and 3 compatible library used for searching time series sub-sequences under z-normalized Euclidean distance for similarity.

Overview

Introduction

Tweet

MASS allows you to search a time series for a subquery resulting in an array of distances. These array of distances enable you to identify similar or dissimilar subsequences compared to your query. At its core, MASS computes Euclidean distances under z-normalization in an efficient manner and is domain agnostic in nature. It is the fundamental algorithm that the matrix profile algorithm is built on top of.

mass-ts is a python 2 and 3 compatible library.

Free software: Apache Software License 2.0

Features

Original Author's Algorithms

  • MASS - the first implementation of MASS
  • MASS2 - the second implementation of MASS that is significantly faster. Typically this is the one you will use.
  • MASS3 - a piecewise version of MASS2 that can be tuned to your hardware. Generally this is used to search very large time series.
  • MASS_weighted - TODO

Library Specific Algorithms

  • MASS2_batch - a batch version of MASS2 that reduces overall memory usage, provides parallelization and enables you to find top K number of matches within the time series. The goal of using this implementation is for very large time series similarity search.
  • top_k_motifs - find the top K number of similar subsequences to your given query. It returns the starting index of the subsequence.
  • top_k_discords - find the top K number of dissimilar subsequences to your given query. It returns the starting index of the subsequence.
  • MASS2_gpu - a GPU implementation of MASS2 leveraging the Python library CuPy.

Installation

pip install mass-ts

GPU Support

Please follow the installation guide for CuPy. It covers what drivers and environmental dependencies are required. Once you are finished there, you can install GPU support for the algorithms.

pip install mass-ts[gpu]

Example Usage

A dedicated repository for practical examples can be found at the mass-ts-examples repository.

import numpy as np
import mass_ts as mts

ts = np.loadtxt('ts.txt')
query = np.loadtxt('query.txt')

# mass
distances = mts.mass(ts, query)

# mass2
distances = mts.mass2(ts, query)

# mass3
distances = mts.mass3(ts, query, 256)

# mass2_gpu
distances = mts.mass2_gpu(ts, query)

# mass2_batch
# start a multi-threaded batch job with all cpu cores and give me the top 5 matches.
# note that batch_size partitions your time series into a subsequence similarity search.
# even for large time series in single threaded mode, this is much more memory efficient than
# MASS2 on its own.
batch_size = 10000
top_matches = 5
n_jobs = -1
indices, distances = mts.mass2_batch(ts, query, batch_size, 
    top_matches=top_matches, n_jobs=n_jobs)

# find minimum distance
min_idx = np.argmin(distances)

# find top 4 motif starting indices
k = 4
exclusion_zone = 25
top_motifs = mts.top_k_motifs(distances, k, exclusion_zone)

# find top 4 discord starting indices
k = 4
exclusion_zone = 25
top_discords = mts.top_k_discords(distances, k, exclusion_zone)

Citations

Abdullah Mueen, Yan Zhu, Michael Yeh, Kaveh Kamgar, Krishnamurthy Viswanathan, Chetan Kumar Gupta and Eamonn Keogh (2015), The Fastest Similarity Search Algorithm for Time Series Subsequences under Euclidean Distance, URL: http://www.cs.unm.edu/~mueen/FastestSimilaritySearch.html

Owner
Matrix Profile Foundation
Enabling community members to easily interact with the Matrix Profile algorithms through education, support and software.
Matrix Profile Foundation
Implementation of the paper: "SinGAN: Learning a Generative Model from a Single Natural Image"

SinGAN This is an unofficial implementation of SinGAN from someone who's been sitting right next to SinGAN's creator for almost five years. Please ref

35 Nov 10, 2022
ICCV2021, Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet

Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet, ICCV 2021 Update: 2021/03/11: update our new results. Now our T2T-ViT-14 w

YITUTech 1k Dec 31, 2022
BRNet - code for Automated assessment of BI-RADS categories for ultrasound images using multi-scale neural networks with an order-constrained loss function

BRNet code for "Automated assessment of BI-RADS categories for ultrasound images using multi-scale neural networks with an order-constrained loss func

Yong Pi 2 Mar 09, 2022
Optical machine for senses sensing using speckle and deep learning

# Senses-speckle [Remote Photonic Detection of Human Senses Using Secondary Speckle Patterns](https://doi.org/10.21203/rs.3.rs-724587/v1) paper Python

Zeev Kalyuzhner 0 Sep 26, 2021
VOneNet: CNNs with a Primary Visual Cortex Front-End

VOneNet: CNNs with a Primary Visual Cortex Front-End A family of biologically-inspired Convolutional Neural Networks (CNNs). VOneNets have the followi

The DiCarlo Lab at MIT 99 Dec 22, 2022
WormMovementSimulation - 3D Simulation of Worm Body Movement with Neurons attached to its body

Generate 3D Locomotion Data This module is intended to create 2D video trajector

1 Aug 09, 2022
Request execution of Galaxy SARS-CoV-2 variation analysis workflows on input data you provide.

SARS-CoV-2 processing requests Request execution of Galaxy SARS-CoV-2 variation analysis workflows on input data you provide. Prerequisites This autom

useGalaxy.eu 17 Aug 13, 2022
Code for the paper "Attention Approximates Sparse Distributed Memory"

Attention Approximates Sparse Distributed Memory - Codebase This is all of the code used to run analyses in the paper "Attention Approximates Sparse D

Trenton Bricken 14 Dec 05, 2022
Visualizer using audio and semantic analysis to explore BigGAN (Brock et al., 2018) latent space.

BigGAN Audio Visualizer Description This visualizer explores BigGAN (Brock et al., 2018) latent space by using pitch/tempo of an audio file to generat

Rush Kapoor 2 Nov 21, 2022
Direct design of biquad filter cascades with deep learning by sampling random polynomials.

IIRNet Direct design of biquad filter cascades with deep learning by sampling random polynomials. Usage git clone https://github.com/csteinmetz1/IIRNe

Christian J. Steinmetz 55 Nov 02, 2022
Attentive Implicit Representation Networks (AIR-Nets)

Attentive Implicit Representation Networks (AIR-Nets) Preprint | Supplementary | Accepted at the International Conference on 3D Vision (3DV) teaser.mo

29 Dec 07, 2022
On the Complementarity between Pre-Training and Back-Translation for Neural Machine Translation (Findings of EMNLP 2021))

PTvsBT On the Complementarity between Pre-Training and Back-Translation for Neural Machine Translation (Findings of EMNLP 2021) Citation Please cite a

Sunbow Liu 10 Nov 25, 2022
An official repository for Paper "Uformer: A General U-Shaped Transformer for Image Restoration".

Uformer: A General U-Shaped Transformer for Image Restoration Zhendong Wang, Xiaodong Cun, Jianmin Bao and Jianzhuang Liu Paper: https://arxiv.org/abs

Zhendong Wang 497 Dec 22, 2022
Introduction to CPM

CPM CPM is an open-source program on large-scale pre-trained models, which is conducted by Beijing Academy of Artificial Intelligence and Tsinghua Uni

Tsinghua AI 136 Dec 23, 2022
Consecutive-Subsequence - Simple software to calculate susequence with highest sum

Simple software to calculate susequence with highest sum This repository contain

Gbadamosi Farouk 1 Jan 31, 2022
Implementation of the GVP-Transformer, which was used in the paper "Learning inverse folding from millions of predicted structures" for de novo protein design alongside Alphafold2

GVP Transformer (wip) Implementation of the GVP-Transformer, which was used in the paper Learning inverse folding from millions of predicted structure

Phil Wang 19 May 06, 2022
Style-based Neural Drum Synthesis with GAN inversion

Style-based Drum Synthesis with GAN Inversion Demo TensorFlow implementation of a style-based version of the adversarial drum synth (ADS) from the pap

Sound and Music Analysis (SoMA) Group 29 Nov 19, 2022
Repository for Multimodal AutoML Benchmark

Benchmarking Multimodal AutoML for Tabular Data with Text Fields Repository for the NeurIPS 2021 Dataset Track Submission "Benchmarking Multimodal Aut

Xingjian Shi 44 Nov 24, 2022
High-resolution networks and Segmentation Transformer for Semantic Segmentation

High-resolution networks and Segmentation Transformer for Semantic Segmentation Branches This is the implementation for HRNet + OCR. The PyTroch 1.1 v

HRNet 2.8k Jan 07, 2023
tensorrt int8 量化yolov5 4.0 onnx模型

onnx模型转换为 int8 tensorrt引擎

123 Dec 28, 2022