Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study.

Related tags

Deep LearningAPR
Overview

APR

The repo for the paper Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study.

Environment setup

To reproduce the results in the paper, we rely on two open-source IR toolkits: Pyserini and tevatron.

We cloned, merged, and modified the two toolkits in this repo and will use them to train and inference the PRF models. We refer to the original github repos to setup the environment:

Install Pyserini: https://github.com/castorini/pyserini/blob/master/docs/installation.md.

Install tevatron: https://github.com/texttron/tevatron#installation.

You also need MS MARCO passage ranking dataset, including the collection and queries. We refer to the official github repo for downloading the data.

To reproduce ANCE-PRF inference results with the original model checkpoint

The code, dataset, and model for reproducing the ANCE-PRF results presented in the original paper:

HongChien Yu, Chenyan Xiong, Jamie Callan. Improving Query Representations for Dense Retrieval with Pseudo Relevance Feedback

have been merged into Pyserini source. Simply just need to follow this instruction, which includes the instructions of downloading the dataset, model checkpoint (provided by the original authors), dense index, and PRF inference.

To train dense retriever PRF models

We use tevatron to train the dense retriever PRF query encodes that we investigated in the paper.

First, you need to have train queries run files to build hard negative training set for each DR.

You can use Pyserini to generate run files for ANCE, TCT-ColBERTv2 and DistilBERT KD TASB by changing the query set flag --topics to queries.train.tsv.

Once you have the run file, cd to /tevatron and run:

python make_train_from_ranking.py \
	--ranking_file /path/to/train/run \
	--model_type (ANCE or TCT or DistilBERT) \
	--output /path/to/save/hard/negative

Apart from the hard negative training set, you also need the original DR query encoder model checkpoints to initial the model weights. You can download them from Huggingface modelhub: ance, tct_colbert-v2-hnp-msmarco, distilbert-dot-tas_b-b256-msmarco. Please use the same name as the link in Huggingface modelhub for each of the folders that contain the model.

After you generated the hard negative training set and downloaded all the models, you can kick off the training for DR-PRF query encoders by:

python -m torch.distributed.launch \
    --nproc_per_node=2 \
    -m tevatron.driver.train \
    --output_dir /path/to/save/mdoel/checkpoints \
    --model_name_or_path /path/to/model/folder \
    --do_train \
    --save_steps 5000 \
    --train_dir /path/to/hard/negative \
    --fp16 \
    --per_device_train_batch_size 32 \
    --learning_rate 1e-6 \
    --num_train_epochs 10 \
    --train_n_passages 21 \
    --q_max_len 512 \
    --dataloader_num_workers 10 \
    --warmup_steps 5000 \
    --add_pooler

To inference dense retriever PRF models

Install Pyserini by following the instructions within pyserini/README.md

Then run:

python -m pyserini.dsearch --topics /path/to/query/tsv/file \
    --index /path/to/index \
    --encoder /path/to/encoder \ # This encoder is for first round retrieval
    --batch-size 64 \
    --output /path/to/output/run/file \
    --prf-method tctv2-prf \
    --threads 12 \
    --sparse-index msmarco-passage \
    --prf-encoder /path/to/encoder \ # This encoder is for PRF query generation
    --prf-depth 3

An example would be:

python -m pyserini.dsearch --topics ./data/msmarco-test2020-queries.tsv \
    --index ./dindex-msmarco-passage-tct_colbert-v2-hnp-bf \
    --encoder ./tct_colbert_v2_hnp \
    --batch-size 64 \
    --output ./runs/tctv2-prf3.res \
    --prf-method tctv2-prf \
    --threads 12 \
    --sparse-index msmarco-passage \
    --prf-encoder ./tct-colbert-v2-prf3/checkpoint-10000 \
    --prf-depth 3

Or one can use pre-built index and models available in Pyserini:

python -m pyserini.dsearch --topics dl19-passage \
    --index msmarco-passage-tct_colbert-v2-hnp-bf \
    --encoder castorini/tct_colbert-v2-hnp-msmarco \
    --batch-size 64 \
    --output ./runs/tctv2-prf3.res \
    --prf-method tctv2-prf \
    --threads 12 \
    --sparse-index msmarco-passage \
    --prf-encoder ./tct-colbert-v2-prf3/checkpoint-10000 \
    --prf-depth 3

The PRF depth --prf-depth 3 depends on the PRF encoder trained, if trained with PRF 3, here only can use PRF 3.

Where --topics can be: TREC DL 2019 Passage: dl19-passage TREC DL 2020 Passage: dl20 MS MARCO Passage V1: msmarco-passage-dev-subset

--encoder can be: ANCE: castorini/ance-msmarco-passage TCT-ColBERT V2 HN+: castorini/tct_colbert-v2-hnp-msmarco DistilBERT Balanced: sebastian-hofstaetter/distilbert-dot-tas_b-b256-msmarco

--index can be: ANCE index with MS MARCO V1 passage collection: msmarco-passage-ance-bf TCT-ColBERT V2 HN+ index with MS MARCO V1 passage collection: msmarco-passage-tct_colbert-v2-hnp-bf DistillBERT Balanced index with MS MARCO V1 passage collection: msmarco-passage-distilbert-dot-tas_b-b256-bf

To evaluate the run:

TREC DL 2019

python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 -m recall.1000 -l 2 dl19-passage ./runs/tctv2-prf3.res

TREC DL 2020

python -m pyserini.eval.trec_eval -c -m ndcg_cut.10 -m recall.1000 -l 2 dl20-passage ./runs/tctv2-prf3.res

MS MARCO Passage Ranking V1

python -m pyserini.eval.msmarco_passage_eval msmarco-passage-dev-subset ./runs/tctv2-prf3.res
Owner
ielab
The Information Engineering Lab
ielab
Locally Enhanced Self-Attention: Rethinking Self-Attention as Local and Context Terms

LESA Introduction This repository contains the official implementation of Locally Enhanced Self-Attention: Rethinking Self-Attention as Local and Cont

Chenglin Yang 20 Dec 31, 2021
PyDeepFakeDet is an integrated and scalable tool for Deepfake detection.

PyDeepFakeDet An integrated and scalable library for Deepfake detection research. Introduction PyDeepFakeDet is an integrated and scalable Deepfake de

Junke, Wang 49 Dec 11, 2022
Complementary Patch for Weakly Supervised Semantic Segmentation, ICCV21 (poster)

CPN (ICCV2021) This is an implementation of Complementary Patch for Weakly Supervised Semantic Segmentation, which is accepted by ICCV2021 poster. Thi

Ferenas 20 Dec 12, 2022
An Api for Emotion recognition.

PLAYEMO Playemo was built from the ground-up with Flask, a python tool that makes it easy for developers to build APIs. Use Cases Is Python your langu

greek geek 2 Jul 16, 2022
Unsupervised Representation Learning by Invariance Propagation

Unsupervised Learning by Invariance Propagation This repository is the official implementation of Unsupervised Learning by Invariance Propagation. Pre

FengWang 15 Jul 06, 2022
A Python Package For System Identification Using NARMAX Models

SysIdentPy is a Python module for System Identification using NARMAX models built on top of numpy and is distributed under the 3-Clause BSD license. N

Wilson Rocha 175 Dec 25, 2022
IA for recognising Traffic Signs using Keras [Tensorflow]

Traffic Signs Recognition ⚠️ 🚦 Fundamentals of Intelligent Systems Introduction 📄 Development of a neural network capable of recognizing nine differ

Sebastián Fernández García 2 Dec 19, 2022
SeqTR: A Simple yet Universal Network for Visual Grounding

SeqTR This is the official implementation of SeqTR: A Simple yet Universal Network for Visual Grounding, which simplifies and unifies the modelling fo

seanZhuh 76 Dec 24, 2022
DeepLab-ResNet rebuilt in TensorFlow

DeepLab-ResNet-TensorFlow This is an (re-)implementation of DeepLab-ResNet in TensorFlow for semantic image segmentation on the PASCAL VOC dataset. Fr

Vladimir 1.2k Nov 04, 2022
Using deep learning model to detect breast cancer.

Breast-Cancer-Detection Breast cancer is the most frequent cancer among women, with around one in every 19 women at risk. The number of cases of breas

1 Feb 13, 2022
Face Mask Detector by live camera using tensorflow-keras, openCV and Python

Face Mask Detector 😷 by Live Camera Detecting masked or unmasked faces by live camera with percentange of mask occupation About Project: This an Arti

Karan Shingde 2 Apr 04, 2022
Pytorch implementation of RED-SDS (NeurIPS 2021).

Recurrent Explicit Duration Switching Dynamical Systems (RED-SDS) This repository contains a reference implementation of RED-SDS, a non-linear state s

Abdul Fatir 10 Dec 02, 2022
Code for One-shot Talking Face Generation from Single-speaker Audio-Visual Correlation Learning (AAAI 2022)

One-shot Talking Face Generation from Single-speaker Audio-Visual Correlation Learning (AAAI 2022) Paper | Demo Requirements Python = 3.6 , Pytorch

FuxiVirtualHuman 84 Jan 03, 2023
[CVPR 2022] TransEditor: Transformer-Based Dual-Space GAN for Highly Controllable Facial Editing

TransEditor: Transformer-Based Dual-Space GAN for Highly Controllable Facial Editing (CVPR 2022) This repository provides the official PyTorch impleme

Billy XU 128 Jan 03, 2023
A naive ROS interface for visualDet3D.

YOLO3D ROS Node This repo contains a Monocular 3D detection Ros node. Base on https://github.com/Owen-Liuyuxuan/visualDet3D All parameters are exposed

Yuxuan Liu 19 Oct 08, 2022
Toontown House CT Edition

Toontown House: Classic Toontown House Classic source that should just work. ❓ W

Open Source Toontown Servers 5 Jan 09, 2022
we propose EfficientDerain for high-efficiency single-image deraining

EfficientDerain we propose EfficientDerain for high-efficiency single-image deraining Requirements python 3.6 pytorch 1.6.0 opencv-python 4.4.0.44 sci

Qing Guo 126 Dec 07, 2022
[CVPR 2021] Scan2Cap: Context-aware Dense Captioning in RGB-D Scans

Scan2Cap: Context-aware Dense Captioning in RGB-D Scans Introduction We introduce the task of dense captioning in 3D scans from commodity RGB-D sensor

Dave Z. Chen 79 Nov 07, 2022
Pytorch Implementation for NeurIPS (oral) paper: Pixel Level Cycle Association: A New Perspective for Domain Adaptive Semantic Segmentation

Pixel-Level Cycle Association This is the Pytorch implementation of our NeurIPS 2020 Oral paper Pixel-Level Cycle Association: A New Perspective for D

87 Oct 19, 2022
📚 Papermill is a tool for parameterizing, executing, and analyzing Jupyter Notebooks.

papermill is a tool for parameterizing, executing, and analyzing Jupyter Notebooks. Papermill lets you: parameterize notebooks execute notebooks This

nteract 5.1k Jan 03, 2023