Official Pytorch implementation of 'RoI Tanh-polar Transformer Network for Face Parsing in the Wild.'

Overview

ibug.face_parsing

RoI Tanh-polar Transformer Network for Face Parsing in the Wild.

Note: If you use this repository in your research, we kindly rquest you to cite the following paper:

@article{lin2021roi,
title = {RoI Tanh-polar transformer network for face parsing in the wild},
journal = {Image and Vision Computing},
volume = {112},
pages = {104190},
year = {2021},
issn = {0262-8856},
doi = {https://doi.org/10.1016/j.imavis.2021.104190},
url = {https://www.sciencedirect.com/science/article/pii/S0262885621000950},
author = {Yiming Lin and Jie Shen and Yujiang Wang and Maja Pantic},
keywords = {Face parsing, In-the-wild dataset, Head pose augmentation, Tanh-polar representation},
}

Dependencies

How to Install

git clone https://github.com/hhj1897/face_parsing
cd face_parsing
git lfs pull
pip install -e .

How to Test

python face_warping_test.py -i 0 -e rtnet50 --decoder fcn -n 11 -d cuda:0

Command-line arguments:

-i VIDEO: Index of the webcam to use (start from 0) or
          path of the input video file
-d: Device to be used by PyTorch (default=cuda:0)
-e: Encoder (default=rtnet50)
--decoder: Decoder (default=fcn)
-n: Number of facial classes, can be 11 or 14 for now (default=11)

iBugMask Dataset

The training and testing images, bounding boxes, landmarks, and parsing maps can be found in the following:

Label Maps

Label map for 11 classes:

0 : background
1 : skin (including face and scalp)
2 : left_eyebrow
3 : right_eyebrow
4 : left_eye
5 : right_eye
6 : nose
7 : upper_lip
8 : inner_mouth
9 : lower_lip
10 : hair

Label map for 14 classes:

0 : background
1 : skin (including face and scalp)
2 : left_eyebrow
3 : right_eyebrow
4 : left_eye
5 : right_eye
6 : nose
7 : upper_lip
8 : inner_mouth
9 : lower_lip
10 : hair
11 : left_ear
12 : right_ear
13 : glasses

Visualisation

You might also like...
VSR-Transformer - This paper proposes a new Transformer for video super-resolution (called VSR-Transformer).
VSR-Transformer - This paper proposes a new Transformer for video super-resolution (called VSR-Transformer).

VSR-Transformer By Jiezhang Cao, Yawei Li, Kai Zhang, Luc Van Gool This paper proposes a new Transformer for video super-resolution (called VSR-Transf

A python implementation of Yolov5 to detect fire or smoke in the wild in Jetson Xavier nx and Jetson nano
A python implementation of Yolov5 to detect fire or smoke in the wild in Jetson Xavier nx and Jetson nano

yolov5-fire-smoke-detect-python A python implementation of Yolov5 to detect fire or smoke in the wild in Jetson Xavier nx and Jetson nano You can see

The official implementation of CSG-Stump: A Learning Friendly CSG-Like Representation for Interpretable Shape Parsing

CSGStumpNet The official implementation of CSG-Stump: A Learning Friendly CSG-Like Representation for Interpretable Shape Parsing Paper | Project page

Cerberus Transformer: Joint Semantic, Affordance and Attribute Parsing

Cerberus Transformer: Joint Semantic, Affordance and Attribute Parsing Paper Introduction Multi-task indoor scene understanding is widely considered a

Pytorch implementation of face attention network
Pytorch implementation of face attention network

Face Attention Network Pytorch implementation of face attention network as described in Face Attention Network: An Effective Face Detector for the Occ

Official pytorch code for SSAT: A Symmetric Semantic-Aware Transformer Network for Makeup Transfer and Removal
Official pytorch code for SSAT: A Symmetric Semantic-Aware Transformer Network for Makeup Transfer and Removal

SSAT: A Symmetric Semantic-Aware Transformer Network for Makeup Transfer and Removal This is the official pytorch code for SSAT: A Symmetric Semantic-

Non-Official Pytorch implementation of
Non-Official Pytorch implementation of "Face Identity Disentanglement via Latent Space Mapping" https://arxiv.org/abs/2005.07728 Using StyleGAN2 instead of StyleGAN

Face Identity Disentanglement via Latent Space Mapping - Implement in pytorch with StyleGAN 2 Description Pytorch implementation of the paper Face Ide

Official PyTorch implementation of
Official PyTorch implementation of "Improving Face Recognition with Large AgeGaps by Learning to Distinguish Children" (BMVC 2021)

Inter-Prototype (BMVC 2021): Official Project Webpage This repository provides the official PyTorch implementation of the following paper: Improving F

Official Pytorch Implementation of 3DV2021 paper: SAFA: Structure Aware Face Animation.
Official Pytorch Implementation of 3DV2021 paper: SAFA: Structure Aware Face Animation.

SAFA: Structure Aware Face Animation (3DV2021) Official Pytorch Implementation of 3DV2021 paper: SAFA: Structure Aware Face Animation. Getting Started

Comments
  • cannot convert to tflite

    cannot convert to tflite

    Hello, thanks for sharing this great study. I'm researching face parsing and i'm trying to port to Tflite and compare the performance, but I can't since this is using special ops - it uses "grid sample"

    What do you suggest I can do in order to test on Tflite/CoreML?

    Will training on Lapa dataset improve the accuracy? if not why?

    opened by ofirkris 1
  • _pickle.UnpicklingError: invalid load key, 'v'

    _pickle.UnpicklingError: invalid load key, 'v'

    How to fix it

    Traceback (most recent call last): File "face_parsing_test.py", line 141, in main() File "face_parsing_test.py", line 50, in main face_parser = RTNetPredictor( File "/home/ml/radishevskii/face_parsing/ibug/face_parsing/parser.py", line 81, in init ckpt = torch.load(ckpt, 'cpu') File "/home/ml/radishevskii/anaconda3/envs/inga_vlad/lib/python3.8/site-packages/torch/serialization.py", line 593, in load return _legacy_load(opened_file, map_location, pickle_module, **pickle_load_args) File "/home/ml/radishevskii/anaconda3/envs/inga_vlad/lib/python3.8/site-packages/torch/serialization.py", line 762, in _legacy_load magic_number = pickle_module.load(f, **pickle_load_args) _pickle.UnpicklingError: invalid load key, 'v'.

    opened by vladradishevsky 1
  • face parsing label

    face parsing label

    It seems that the dataset released contains only the annotation of 11 facial parts. However, the repository also provide the model trained with dataset containing labels of 14 facial parts. Thus, we wonder how can we get the labels of 14 facial parts. Can you provide the download link? Thanks!

    opened by HowToNameMe 0
Releases(v0.2.0)
Owner
Jie Shen
Jie Shen
Compact Bidirectional Transformer for Image Captioning

Compact Bidirectional Transformer for Image Captioning Requirements Python 3.8 Pytorch 1.6 lmdb h5py tensorboardX Prepare Data Please use git clone --

YE Zhou 19 Dec 12, 2022
An implementation of shampoo

shampoo.pytorch An implementation of shampoo, proposed in Shampoo : Preconditioned Stochastic Tensor Optimization by Vineet Gupta, Tomer Koren and Yor

Ryuichiro Hataya 69 Sep 10, 2022
Federated Learning Based on Dynamic Regularization

Federated Learning Based on Dynamic Regularization This is implementation of Federated Learning Based on Dynamic Regularization. Requirements Please i

39 Jan 07, 2023
[CVPR 2022] Pytorch implementation of "Templates for 3D Object Pose Estimation Revisited: Generalization to New objects and Robustness to Occlusions" paper

template-pose Pytorch implementation of "Templates for 3D Object Pose Estimation Revisited: Generalization to New objects and Robustness to Occlusions

Van Nguyen Nguyen 92 Dec 28, 2022
Remote sensing change detection using PaddlePaddle

Change Detection Laboratory Developing and benchmarking deep learning-based remo

Lin Manhui 15 Sep 23, 2022
Official code for paper "ISNet: Costless and Implicit Image Segmentation for Deep Classifiers, with Application in COVID-19 Detection"

Official code for paper "ISNet: Costless and Implicit Image Segmentation for Deep Classifiers, with Application in COVID-19 Detection". LRPDenseNet.py

Pedro Ricardo Ariel Salvador Bassi 2 Sep 21, 2022
Repository for paper "Non-intrusive speech intelligibility prediction from discrete latent representations"

Non-Intrusive Speech Intelligibility Prediction from Discrete Latent Representations Official repository for paper "Non-Intrusive Speech Intelligibili

Alex McKinney 5 Oct 25, 2022
Deep Ensemble Learning with Jet-Like architecture

Ransomware analysis using DEL with jet-like architecture comprising two CNN wings, a sparse AE tail, a non-linear PCA to produce a diverse feature space, and an MLP nose

Ahsen Nazir 2 Feb 06, 2022
HAR-stacked-residual-bidir-LSTMs - Deep stacked residual bidirectional LSTMs for HAR

HAR-stacked-residual-bidir-LSTM The project is based on this repository which is presented as a tutorial. It consists of Human Activity Recognition (H

Guillaume Chevalier 287 Dec 27, 2022
code for ICCV 2021 paper 'Generalized Source-free Domain Adaptation'

G-SFDA Code (based on pytorch 1.3) for our ICCV 2021 paper 'Generalized Source-free Domain Adaptation'. [project] [paper]. Dataset preparing Download

Shiqi Yang 84 Dec 26, 2022
AoT is a system for automatically generating off-target test harness by using build information.

AoT: Auto off-Target Automatically generating off-target test harness by using build information. Brought to you by the Mobile Security Team at Samsun

Samsung 10 Oct 19, 2022
PFLD pytorch Implementation

PFLD-pytorch Implementation of PFLD A Practical Facial Landmark Detector by pytorch. 1. install requirements pip3 install -r requirements.txt 2. Datas

zhaozhichao 669 Jan 02, 2023
Implementation of 'lightweight' GAN, proposed in ICLR 2021, in Pytorch. High resolution image generations that can be trained within a day or two

512x512 flowers after 12 hours of training, 1 gpu 256x256 flowers after 12 hours of training, 1 gpu Pizza 'Lightweight' GAN Implementation of 'lightwe

Phil Wang 1.5k Jan 02, 2023
Implementation of ICCV19 Paper "Learning Two-View Correspondences and Geometry Using Order-Aware Network"

OANet implementation Pytorch implementation of OANet for ICCV'19 paper "Learning Two-View Correspondences and Geometry Using Order-Aware Network", by

Jiahui Zhang 225 Dec 05, 2022
Learning To Have An Ear For Face Super-Resolution

Learning To Have An Ear For Face Super-Resolution [Project Page] This repository contains demo code of our CVPR2020 paper. Training and evaluation on

50 Nov 16, 2022
[AAAI 2021] EMLight: Lighting Estimation via Spherical Distribution Approximation and [ICCV 2021] Sparse Needlets for Lighting Estimation with Spherical Transport Loss

EMLight: Lighting Estimation via Spherical Distribution Approximation (AAAI 2021) Update 12/2021: We release our Virtual Object Relighting (VOR) Datas

Fangneng Zhan 144 Jan 06, 2023
Arch-Net: Model Distillation for Architecture Agnostic Model Deployment

Arch-Net: Model Distillation for Architecture Agnostic Model Deployment The official implementation of Arch-Net: Model Distillation for Architecture A

MEGVII Research 22 Jan 05, 2023
Implements an infinite sum of poisson-weighted convolutions

An infinite sum of Poisson-weighted convolutions Kyle Cranmer, Aug 2018 If viewing on GitHub, this looks better with nbviewer: click here Consider a v

Kyle Cranmer 26 Dec 07, 2022
Deep Learning Visuals contains 215 unique images divided in 23 categories

Deep Learning Visuals contains 215 unique images divided in 23 categories (some images may appear in more than one category). All the images were originally published in my book "Deep Learning with P

Daniel Voigt Godoy 1.3k Dec 28, 2022
ICRA 2021 "Towards Precise and Efficient Image Guided Depth Completion"

PENet: Precise and Efficient Depth Completion This repo is the PyTorch implementation of our paper to appear in ICRA2021 on "Towards Precise and Effic

232 Dec 25, 2022