[ICCV'21] PlaneTR: Structure-Guided Transformers for 3D Plane Recovery

Overview

PlaneTR: Structure-Guided Transformers for 3D Plane Recovery

This is the official implementation of our ICCV 2021 paper

News

There maybe some bugs in the current public code and I am trying my best to solve them.

Contact me if you have any question.

TODO

  • Supplement 2D/3D visualization code.

Getting Started

Clone the repository:

git clone https://github.com/IceTTTb/PlaneTR3D.git

We use Python 3.6 and PyTorch 1.6.0 in our implementation, please install dependencies:

conda create -n planeTR python=3.6
conda activate planeTR
conda install pytorch=1.6.0 torchvision=0.7.0 torchaudio cudatoolkit=10.2 -c pytorch
pip install -r requirements.txt

Data Preparation

We train and test our network on the plane dataset created by PlaneNet. We follow PlaneAE to convert the .tfrecords to .npz files. Please refer to PlaneAE for more details.

We generate line segments using the state-of-the-art line segment detection algorithm HAWP with their pretrained model. The processed line segments data we used can be downloaded here.

The structure of the data folder should be

plane_data/
  --train/*.npz
  --train_img/*
  --val/*.npz
  --val_img/*
  --train.txt
  --val.txt

Training

Download the pretrained model of HRNet and place it under the 'ckpts/' folder.

Change the 'root_dir' in config files to the path where you save the data.

Run the following command to train our network on one GPU:

CUDA_VISIBLE_DEVICES=0 python train_planeTR.py

Run the following command to train our network on multiple GPUs:

CUDA_VISIBLE_DEVICES=0,1,2 python -m torch.distributed.launch --nproc_per_node=3 --master_port 295025 train_planeTR.py

Evaluation

Download the pretrained model here and place it under the 'ckpts/' folder.

Change the 'resume_dir' in 'config_planeTR_eval.yaml' to the path where you save the weight file.

Change the 'root_dir' in config files to the path where you save the data.

Run the following command to evaluate the performance:

CUDA_VISIBLE_DEVICES=0 python eval_planeTR.py

Citations

If you find our work useful in your research, please consider citing:

@inproceedings{tan2021planeTR,
title={PlaneTR: Structure-Guided Transformers for 3D Plane Recovery},
author={Tan, Bin and Xue, Nan and Bai, Song and Wu, Tianfu and Xia, Gui-Song},
booktitle = {International Conference on Computer Vision},
year={2021}
}

Contact

[email protected]

https://xuenan.net/

Acknowledgements

We thank the authors of PlaneAE, PlaneRCNN, interplane and DETR. Our implementation is heavily built upon their codes.

Estimating Example Difficulty using Variance of Gradients

Estimating Example Difficulty using Variance of Gradients This repository contains source code necessary to reproduce some of the main results in the

Chirag Agarwal 48 Dec 26, 2022
Safe Bayesian Optimization

SafeOpt - Safe Bayesian Optimization This code implements an adapted version of the safe, Bayesian optimization algorithm, SafeOpt [1], [2]. It also p

Felix Berkenkamp 111 Dec 11, 2022
Deep-Learning-Book-Chapter-Summaries - Attempting to make the Deep Learning Book easier to understand.

Deep-Learning-Book-Chapter-Summaries This repository provides a summary for each chapter of the Deep Learning book by Ian Goodfellow, Yoshua Bengio an

Aman Dalmia 1k Dec 27, 2022
Quickly and easily create / train a custom DeepDream model

Dream-Creator This project aims to simplify the process of creating a custom DeepDream model by using pretrained GoogleNet models and custom image dat

55 Dec 27, 2022
In Search of Probeable Generalization Measures

In Search of Probeable Generalization Measures Exciting News! In Search of Probeable Generalization Measures has been accepted to the International Co

Mahdi S. Hosseini 6 Sep 11, 2022
Machine Learning Toolkit for Kubernetes

Kubeflow the cloud-native platform for machine learning operations - pipelines, training and deployment. Documentation Please refer to the official do

Kubeflow 12.1k Jan 03, 2023
Collections for the lasted paper about multi-view clustering methods (papers, codes)

Multi-View Clustering Papers Collections for the lasted paper about multi-view clustering methods (papers, codes). There also exists some repositories

Andrew Guan 10 Sep 20, 2022
Collection of generative models in Tensorflow

tensorflow-generative-model-collections Tensorflow implementation of various GANs and VAEs. Related Repositories Pytorch version Pytorch version of th

3.8k Dec 30, 2022
Weakly-supervised object detection.

Wetectron Wetectron is a software system that implements state-of-the-art weakly-supervised object detection algorithms. Project CVPR'20, ECCV'20 | Pa

NVIDIA Research Projects 342 Jan 05, 2023
Adaptive Dropblock Enhanced GenerativeAdversarial Networks for Hyperspectral Image Classification

This repo holds the codes of our paper: Adaptive Dropblock Enhanced GenerativeAdversarial Networks for Hyperspectral Image Classification, which is ac

Feng Gao 17 Dec 28, 2022
Implementation of Bagging and AdaBoost Algorithm

Bagging-and-AdaBoost Implementation of Bagging and AdaBoost Algorithm Dataset Red Wine Quality Data Sets For simplicity, we will have 2 classes of win

Zechen Ma 1 Nov 01, 2021
Data labels and scripts for fastMRI.org

fastMRI+: Clinical pathology annotations for the fastMRI dataset The fastMRI dataset is a publicly available MRI raw (k-space) dataset. It has been us

Microsoft 51 Dec 22, 2022
Working demo of the Multi-class and Anomaly classification model using the CLIP feature space

👁️ Hindsight AI: Crime Classification With Clip About For Educational Purposes Only This is a recursive neural net trained to classify specific crime

Miles Tweed 2 Jun 05, 2022
[NeurIPS 2019] Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss

Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss Kaidi Cao, Colin Wei, Adrien Gaidon, Nikos Arechiga, Tengyu Ma This is the offi

Kaidi Cao 528 Jan 01, 2023
《A-CNN: Annularly Convolutional Neural Networks on Point Clouds》(2019)

A-CNN: Annularly Convolutional Neural Networks on Point Clouds Created by Artem Komarichev, Zichun Zhong, Jing Hua from Department of Computer Science

Artёm Komarichev 44 Feb 24, 2022
LaneDet is an open source lane detection toolbox based on PyTorch that aims to pull together a wide variety of state-of-the-art lane detection models

LaneDet is an open source lane detection toolbox based on PyTorch that aims to pull together a wide variety of state-of-the-art lane detection models. Developers can reproduce these SOTA methods and

TuZheng 405 Jan 04, 2023
A highly efficient and modular implementation of Gaussian Processes in PyTorch

GPyTorch GPyTorch is a Gaussian process library implemented using PyTorch. GPyTorch is designed for creating scalable, flexible, and modular Gaussian

3k Jan 02, 2023
Evaluating different engineering tricks that make RL work

Reinforcement Learning Tricks, Index This repository contains the code for the paper "Distilling Reinforcement Learning Tricks for Video Games". Short

Anssi 15 Dec 26, 2022
A pytorch implementation of faster RCNN detection framework (Use detectron2, it's a masterpiece)

Notice(2019.11.2) This repo was built back two years ago when there were no pytorch detection implementation that can achieve reasonable performance.

Ruotian(RT) Luo 1.8k Jan 01, 2023
A modern pure-Python library for reading PDF files

pdf A modern pure-Python library for reading PDF files. The goal is to have a modern interface to handle PDF files which is consistent with itself and

6 Apr 06, 2022