Density-aware Single Image De-raining using a Multi-stream Dense Network (CVPR 2018)

Overview

DID-MDN

Density-aware Single Image De-raining using a Multi-stream Dense Network

He Zhang, Vishal M. Patel

[Paper Link] (CVPR'18)

We present a novel density-aware multi-stream densely connected convolutional neural network-based algorithm, called DID-MDN, for joint rain density estimation and de-raining. The proposed method enables the network itself to automatically determine the rain-density information and then efficiently remove the corresponding rain-streaks guided by the estimated rain-density label. To better characterize rain-streaks with dif- ferent scales and shapes, a multi-stream densely connected de-raining network is proposed which efficiently leverages features from different scales. Furthermore, a new dataset containing images with rain-density labels is created and used to train the proposed density-aware network.

@inproceedings{derain_zhang_2018,		
  title={Density-aware Single Image De-raining using a Multi-stream Dense Network},
  author={Zhang, He and Patel, Vishal M},
  booktitle={CVPR},
  year={2018}
} 

Prerequisites:

  1. Linux
  2. Python 2 or 3
  3. CPU or NVIDIA GPU + CUDA CuDNN (CUDA 8.0)

Installation:

  1. Install PyTorch and dependencies from http://pytorch.org (Ubuntu+Python2.7) (conda install pytorch torchvision -c pytorch)

  2. Install Torch vision from the source. (git clone https://github.com/pytorch/vision cd vision python setup.py install)

  3. Install python package: numpy, scipy, PIL, pdb

Demo using pre-trained model

python test.py --dataroot ./facades/github --valDataroot ./facades/github --netG ./pre_trained/netG_epoch_9.pth   

Pre-trained model can be downloaded at (put it in the folder 'pre_trained'): https://drive.google.com/drive/folders/1VRUkemynOwWH70bX9FXL4KMWa4s_PSg2?usp=sharing

Pre-trained density-aware model can be downloaded at (Put it in the folder 'classification'): https://drive.google.com/drive/folders/1-G86JTvv7o1iTyfB2YZAQTEHDtSlEUKk?usp=sharing

Pre-trained residule-aware model can be downloaded at (Put it in the folder 'residual_heavy'): https://drive.google.com/drive/folders/1bomrCJ66QVnh-WduLuGQhBC-aSWJxPmI?usp=sharing

Training (Density-aware Deraining network using GT label)

python derain_train_2018.py  --dataroot ./facades/DID-MDN-training/Rain_Medium/train2018new  --valDataroot ./facades/github --exp ./check --netG ./pre_trained/netG_epoch_9.pth.
Make sure you download the training sample and put in the right folder

Density-estimation Training (rain-density classifier)

python train_rain_class.py  --dataroot ./facades/DID-MDN-training/Rain_Medium/train2018new  --exp ./check_class	

Testing

python demo.py --dataroot ./your_dataroot --valDataroot ./your_dataroot --netG ./pre_trained/netG_epoch_9.pth   

Reproduce

To reproduce the quantitative results shown in the paper, please save both generated and target using python demo.py into the .png format and then test using offline tool such as the PNSR and SSIM measurement in Python or Matlab. In addition, please use netG.train() for testing since the batch for training is 1.

Dataset

Training (heavy, medium, light) and testing (TestA and Test B) data can be downloaded at the following link: https://drive.google.com/file/d/1cMXWICiblTsRl1zjN8FizF5hXOpVOJz4/view?usp=sharing

License

Code is under MIT license.

Acknowledgments

Great thanks for the insight discussion with Vishwanath Sindagi and help from Hang Zhang

Owner
He Zhang
Research Sc[email protected], Phd in Computer Vision, Deep Learning
He Zhang
This is the pytorch implementation of the paper - Axiomatic Attribution for Deep Networks.

Integrated Gradients This is the pytorch implementation of "Axiomatic Attribution for Deep Networks". The original tensorflow version could be found h

Tianhong Dai 150 Dec 23, 2022
Implementation of gaze tracking and demo

Predicting Customer Demand by Using Gaze Detecting and Object Tracking This project is the integration of gaze detecting and object tracking. Predict

2 Oct 20, 2022
CS50x-AI - Artificial Intelligence with Python from Harvard University

CS50x-AI Artificial Intelligence with Python from Harvard University 📖 Table of

Hosein Damavandi 6 Aug 22, 2022
Le dataset des images du projet d'IA de 2021

face-mask-dataset-ilc-2021 Le dataset des images du projet d'IA de 2021, Indiquez vos id git dans la issue pour les droits TL;DR: Choisir 200 images J

7 Nov 15, 2021
Systemic Evolutionary Chemical Space Exploration for Drug Discovery

SECSE SECSE: Systemic Evolutionary Chemical Space Explorer Chemical space exploration is a major task of the hit-finding process during the pursuit of

64 Dec 16, 2022
SketchEdit: Mask-Free Local Image Manipulation with Partial Sketches

SketchEdit: Mask-Free Local Image Manipulation with Partial Sketches [Paper]  [Project Page]  [Interactive Demo]  [Supplementary Material]        Usag

215 Dec 25, 2022
Implementation of "Selection via Proxy: Efficient Data Selection for Deep Learning" from ICLR 2020.

Selection via Proxy: Efficient Data Selection for Deep Learning This repository contains a refactored implementation of "Selection via Proxy: Efficien

Stanford Future Data Systems 70 Nov 16, 2022
The description of FMFCC-A (audio track of FMFCC) dataset and Challenge resluts.

FMFCC-A This project is the description of FMFCC-A (audio track of FMFCC) dataset and Challenge resluts. The FMFCC-A dataset is shared through BaiduCl

18 Dec 24, 2022
Practical Blind Denoising via Swin-Conv-UNet and Data Synthesis

Practical Blind Denoising via Swin-Conv-UNet and Data Synthesis [Paper] [Online Demo] The following results are obtained by our SCUNet with purely syn

Kai Zhang 312 Jan 07, 2023
Official code of our work, AVATAR: A Parallel Corpus for Java-Python Program Translation.

AVATAR Official code of our work, AVATAR: A Parallel Corpus for Java-Python Program Translation. AVATAR stands for jAVA-pyThon progrAm tRanslation. AV

Wasi Ahmad 26 Dec 03, 2022
Weakly- and Semi-Supervised Panoptic Segmentation (ECCV18)

Weakly- and Semi-Supervised Panoptic Segmentation by Qizhu Li*, Anurag Arnab*, Philip H.S. Torr This repository demonstrates the weakly supervised gro

Qizhu Li 159 Dec 20, 2022
Simulation code and tutorial for BBHnet training data

Simulation Dataset for BBHnet NOTE: OLD README, UPDATE IN PROGRESS We generate simulation dataset to train BBHnet, our deep learning framework for det

0 May 31, 2022
CNNs for Sentence Classification in PyTorch

Introduction This is the implementation of Kim's Convolutional Neural Networks for Sentence Classification paper in PyTorch. Kim's implementation of t

Shawn Ng 956 Dec 19, 2022
Scripts and outputs related to the paper Prediction of Adverse Biological Effects of Chemicals Using Knowledge Graph Embeddings.

Knowledge Graph Embeddings and Chemical Effect Prediction, 2020. Scripts and outputs related to the paper Prediction of Adverse Biological Effects of

Knowledge Graphs at the Norwegian Institute for Water Research 1 Nov 01, 2021
Pytorch implementation of "A simple neural network module for relational reasoning" (Relational Networks)

Pytorch implementation of Relational Networks - A simple neural network module for relational reasoning Implemented & tested on Sort-of-CLEVR task. So

Kim Heecheol 800 Dec 05, 2022
Instant-nerf-pytorch - NeRF trained SUPER FAST in pytorch

instant-nerf-pytorch This is WORK IN PROGRESS, please feel free to contribute vi

94 Nov 22, 2022
A toy project using OpenCV and PyMunk

A toy project using OpenCV, PyMunk and Mediapipe the source code for my LindkedIn post It's just a toy project and I didn't write a documentation yet,

Amirabbas Asadi 82 Oct 28, 2022
Fast and Context-Aware Framework for Space-Time Video Super-Resolution (VCIP 2021)

Fast and Context-Aware Framework for Space-Time Video Super-Resolution Preparation Dependencies PyTorch 1.2.0 CUDA 10.0 DCNv2 cd model/DCNv2 bash make

Xueheng Zhang 1 Mar 29, 2022
Collapse by Conditioning: Training Class-conditional GANs with Limited Data

Collapse by Conditioning: Training Class-conditional GANs with Limited Data Moha

Mohamad Shahbazi 33 Dec 06, 2022
Text-Based Ideal Points

Text-Based Ideal Points Source code for the paper: Text-Based Ideal Points by Keyon Vafa, Suresh Naidu, and David Blei (ACL 2020). Update (June 29, 20

Keyon Vafa 37 Oct 09, 2022