Simple Pose: Rethinking and Improving a Bottom-up Approach for Multi-Person Pose Estimation

Overview

SimplePose

Code and pre-trained models for our paper, “Simple Pose: Rethinking and Improving a Bottom-up Approach for Multi-Person Pose Estimation”, accepted by AAAI-2020.

Also this repo serves as the Part B of our paper "Multi-Person Pose Estimation Based on Gaussian Response Heatmaps" (under review). The Part A is available at this link.

  • Update

    A faster project is to be released.

Introduction

A bottom-up approach for the problem of multi-person pose estimation.

heatmap

network

Contents

  1. Training
  2. Evaluation
  3. Demo

Project Features

  • Implement the models using Pytorch in auto mixed-precision (using Nvidia Apex).
  • Support training on multiple GPUs (over 90% GPU usage rate on each GPU card).
  • Fast data preparing and augmentation during training (generating about 40 samples per second on signle CPU process and much more if wrapped by DataLoader Class).
  • Focal L2 loss. FL2
  • Multi-scale supervision.
  • This project can also serve as a detailed practice to the green hand in Pytorch.

Prepare

  1. Install packages:

    Python=3.6, Pytorch>1.0, Nvidia Apex and other packages needed.

  2. Download the COCO dataset.

  3. Download the pre-trained models (default configuration: download the pretrained model snapshotted at epoch 52 provided as follow).

    Download Link: BaiduCloud

    Alternatively, download the pre-trained model without optimizer checkpoint only for the default configuration via GoogleDrive

  4. Change the paths in the code according to your environment.

Run a Demo

python demo_image.py

examples

Inference Speed

The speed of our system is tested on the MS-COCO test-dev dataset.

  • Inference speed of our 4-stage IMHN with 512 × 512 input on one 2080TI GPU: 38.5 FPS (100% GPU-Util).
  • Processing speed of the keypoint assignment algorithm part that is implemented in pure Python and a single process on Intel Xeon E5-2620 CPU: 5.2 FPS (has not been well accelerated).

Evaluation Steps

The corresponding code is in pure python without multiprocess for now.

python evaluate.py

Results on MSCOCO 2017 test-dev subset (focal L2 loss with gamma=2):

 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets= 20 ] = 0.685
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets= 20 ] = 0.867
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets= 20 ] = 0.749
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets= 20 ] = 0.664
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets= 20 ] = 0.719
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 20 ] = 0.728
 Average Recall     (AR) @[ IoU=0.50      | area=   all | maxDets= 20 ] = 0.892
 Average Recall     (AR) @[ IoU=0.75      | area=   all | maxDets= 20 ] = 0.782
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets= 20 ] = 0.688
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets= 20 ] = 0.784

Training Steps

Before training, prepare the training data using ''SimplePose/data/coco_masks_hdf5.py''.

Multiple GUPs are recommended to use to speed up the training process, but we support different training options.

  • Most code has been provided already, you can train the model with.

    1. 'train.py': single training process on one GPU only.
    2. 'train_parallel.py': signle training process on multiple GPUs using Dataparallel.
    3. 'train_distributed.py' (recommended): multiple training processes on multiple GPUs using Distributed Training:
python -m torch.distributed.launch --nproc_per_node=4 train_distributed.py

Note: The loss_model_parrel.py is for train.py and train_parallel.py, while the loss_model.py is for train_distributed.py and train_distributed_SWA.py. They are different in dividing the batch size. Please refer to the code about the different choices.

For distributed training, the real batch_size = batch_size_in_config* × GPU_Num (world_size actually). For others, the real batch_size = batch_size_in_config*. The differences come from the different mechanisms of data parallel training and distributed training.

Referred Repositories (mainly)

Recommend Repositories

Faster Version: Chun-Ming Su has rebuilt and improved the post-processing speed of this repo using C++, and the improved system can run up to 7~8 FPS using a single scale with flipping on a 2080 TI GPU. Many thanks to Chun-Ming Su.

Citation

Please kindly cite this paper in your publications if it helps your research.

@inproceedings{li2020simple,
  title={Simple Pose: Rethinking and Improving a Bottom-up Approach for Multi-Person Pose Estimation.},
  author={Li, Jia and Su, Wen and Wang, Zengfu},
  booktitle={AAAI},
  pages={11354--11361},
  year={2020}
}
BEAS: Blockchain Enabled Asynchronous & Secure Federated Machine Learning

BEAS Blockchain Enabled Asynchronous and Secure Federated Machine Learning Default Network Configuration: The default application uses the HyperLedger

Harpreet Virk 11 Nov 20, 2022
LAnguage Model Analysis

LAMA: LAnguage Model Analysis LAMA is a probe for analyzing the factual and commonsense knowledge contained in pretrained language models. The dataset

Meta Research 960 Jan 08, 2023
PyTorch-lightning implementation of the ESFW module proposed in our paper Edge-Selective Feature Weaving for Point Cloud Matching

Edge-Selective Feature Weaving for Point Cloud Matching This repository contains a PyTorch-lightning implementation of the ESFW module proposed in our

5 Feb 14, 2022
🤗 Push your spaCy pipelines to the Hugging Face Hub

spacy-huggingface-hub: Push your spaCy pipelines to the Hugging Face Hub This package provides a CLI command for uploading any trained spaCy pipeline

Explosion 30 Oct 09, 2022
2020 CCF大数据与计算智能大赛-非结构化商业文本信息中隐私信息识别-第7名方案

2020CCF-NER 2020 CCF大数据与计算智能大赛-非结构化商业文本信息中隐私信息识别-第7名方案 bert base + flat + crf + fgm + swa + pu learning策略 + clue数据集 = test1单模0.906 词向量

67 Oct 19, 2022
A python implementation of Deep-Image-Analogy based on pytorch.

Deep-Image-Analogy This project is a python implementation of Deep Image Analogy.https://arxiv.org/abs/1705.01088. Some results Requirements python 3

Peng Lu 171 Dec 14, 2022
Python implementation of NARS (Non-Axiomatic-Reasoning-System)

Python implementation of NARS (Non-Axiomatic-Reasoning-System)

Bowen XU 11 Dec 20, 2022
This is an open solution to the Home Credit Default Risk challenge 🏡

Home Credit Default Risk: Open Solution This is an open solution to the Home Credit Default Risk challenge 🏡 . More competitions 🎇 Check collection

minerva.ml 427 Dec 27, 2022
Code for "Single-view robot pose and joint angle estimation via render & compare", CVPR 2021 (Oral).

Single-view robot pose and joint angle estimation via render & compare Yann Labbé, Justin Carpentier, Mathieu Aubry, Josef Sivic CVPR: Conference on C

Yann Labbé 51 Oct 14, 2022
PixelPick This is an official implementation of the paper "All you need are a few pixels: semantic segmentation with PixelPick."

PixelPick This is an official implementation of the paper "All you need are a few pixels: semantic segmentation with PixelPick." [Project page] [Paper

Gyungin Shin 59 Sep 25, 2022
This is the official repository of XVFI (eXtreme Video Frame Interpolation)

XVFI This is the official repository of XVFI (eXtreme Video Frame Interpolation), https://arxiv.org/abs/2103.16206 Last Update: 20210607 We provide th

Jihyong Oh 195 Dec 29, 2022
Its a Plant Leaf Disease Detection System based on Machine Learning.

My_Project_Code Its a Plant Leaf Disease Detection System based on Machine Learning. I have used Tomato Leaves Dataset from kaggle. This system detect

Sanskriti Sidola 3 Jun 15, 2022
Imaginaire - NVIDIA's Deep Imagination Team's PyTorch Library

Imaginaire Docs | License | Installation | Model Zoo Imaginaire is a pytorch library that contains optimized implementation of several image and video

NVIDIA Research Projects 3.6k Dec 29, 2022
Time Series Cross-Validation -- an extension for scikit-learn

TSCV: Time Series Cross-Validation This repository is a scikit-learn extension for time series cross-validation. It introduces gaps between the traini

Wenjie Zheng 222 Jan 01, 2023
Resources related to our paper "CLIN-X: pre-trained language models and a study on cross-task transfer for concept extraction in the clinical domain"

CLIN-X (CLIN-X-ES) & (CLIN-X-EN) This repository holds the companion code for the system reported in the paper: "CLIN-X: pre-trained language models a

Bosch Research 4 Dec 05, 2022
Learning from Synthetic Shadows for Shadow Detection and Removal [Inoue+, IEEE TCSVT 2020].

Learning from Synthetic Shadows for Shadow Detection and Removal (IEEE TCSVT 2020) Overview This repo is for the paper "Learning from Synthetic Shadow

Naoto Inoue 67 Dec 28, 2022
Custom Implementation of Non-Deep Networks

ParNet Custom Implementation of Non-deep Networks arXiv:2110.07641 Ankit Goyal, Alexey Bochkovskiy, Jia Deng, Vladlen Koltun Official Repository https

Pritama Kumar Nayak 20 May 27, 2022
Python wrapper of LSODA (solving ODEs) which can be called from within numba functions.

numbalsoda numbalsoda is a python wrapper to the LSODA method in ODEPACK, which is for solving ordinary differential equation initial value problems.

Nick Wogan 52 Jan 09, 2023
[CVPR 2020] 3D Photography using Context-aware Layered Depth Inpainting

[CVPR 2020] 3D Photography using Context-aware Layered Depth Inpainting [Paper] [Project Website] [Google Colab] We propose a method for converting a

Virginia Tech Vision and Learning Lab 6.2k Jan 01, 2023
An open-source Deep Learning Engine for Healthcare that aims to treat & prevent major diseases

AlphaCare Background AlphaCare is a work-in-progress, open-source Deep Learning Engine for Healthcare that aims to treat and prevent major diseases. T

Siraj Raval 44 Nov 05, 2022