Simple Pose: Rethinking and Improving a Bottom-up Approach for Multi-Person Pose Estimation

Overview

SimplePose

Code and pre-trained models for our paper, “Simple Pose: Rethinking and Improving a Bottom-up Approach for Multi-Person Pose Estimation”, accepted by AAAI-2020.

Also this repo serves as the Part B of our paper "Multi-Person Pose Estimation Based on Gaussian Response Heatmaps" (under review). The Part A is available at this link.

  • Update

    A faster project is to be released.

Introduction

A bottom-up approach for the problem of multi-person pose estimation.

heatmap

network

Contents

  1. Training
  2. Evaluation
  3. Demo

Project Features

  • Implement the models using Pytorch in auto mixed-precision (using Nvidia Apex).
  • Support training on multiple GPUs (over 90% GPU usage rate on each GPU card).
  • Fast data preparing and augmentation during training (generating about 40 samples per second on signle CPU process and much more if wrapped by DataLoader Class).
  • Focal L2 loss. FL2
  • Multi-scale supervision.
  • This project can also serve as a detailed practice to the green hand in Pytorch.

Prepare

  1. Install packages:

    Python=3.6, Pytorch>1.0, Nvidia Apex and other packages needed.

  2. Download the COCO dataset.

  3. Download the pre-trained models (default configuration: download the pretrained model snapshotted at epoch 52 provided as follow).

    Download Link: BaiduCloud

    Alternatively, download the pre-trained model without optimizer checkpoint only for the default configuration via GoogleDrive

  4. Change the paths in the code according to your environment.

Run a Demo

python demo_image.py

examples

Inference Speed

The speed of our system is tested on the MS-COCO test-dev dataset.

  • Inference speed of our 4-stage IMHN with 512 × 512 input on one 2080TI GPU: 38.5 FPS (100% GPU-Util).
  • Processing speed of the keypoint assignment algorithm part that is implemented in pure Python and a single process on Intel Xeon E5-2620 CPU: 5.2 FPS (has not been well accelerated).

Evaluation Steps

The corresponding code is in pure python without multiprocess for now.

python evaluate.py

Results on MSCOCO 2017 test-dev subset (focal L2 loss with gamma=2):

 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets= 20 ] = 0.685
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets= 20 ] = 0.867
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets= 20 ] = 0.749
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets= 20 ] = 0.664
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets= 20 ] = 0.719
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 20 ] = 0.728
 Average Recall     (AR) @[ IoU=0.50      | area=   all | maxDets= 20 ] = 0.892
 Average Recall     (AR) @[ IoU=0.75      | area=   all | maxDets= 20 ] = 0.782
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets= 20 ] = 0.688
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets= 20 ] = 0.784

Training Steps

Before training, prepare the training data using ''SimplePose/data/coco_masks_hdf5.py''.

Multiple GUPs are recommended to use to speed up the training process, but we support different training options.

  • Most code has been provided already, you can train the model with.

    1. 'train.py': single training process on one GPU only.
    2. 'train_parallel.py': signle training process on multiple GPUs using Dataparallel.
    3. 'train_distributed.py' (recommended): multiple training processes on multiple GPUs using Distributed Training:
python -m torch.distributed.launch --nproc_per_node=4 train_distributed.py

Note: The loss_model_parrel.py is for train.py and train_parallel.py, while the loss_model.py is for train_distributed.py and train_distributed_SWA.py. They are different in dividing the batch size. Please refer to the code about the different choices.

For distributed training, the real batch_size = batch_size_in_config* × GPU_Num (world_size actually). For others, the real batch_size = batch_size_in_config*. The differences come from the different mechanisms of data parallel training and distributed training.

Referred Repositories (mainly)

Recommend Repositories

Faster Version: Chun-Ming Su has rebuilt and improved the post-processing speed of this repo using C++, and the improved system can run up to 7~8 FPS using a single scale with flipping on a 2080 TI GPU. Many thanks to Chun-Ming Su.

Citation

Please kindly cite this paper in your publications if it helps your research.

@inproceedings{li2020simple,
  title={Simple Pose: Rethinking and Improving a Bottom-up Approach for Multi-Person Pose Estimation.},
  author={Li, Jia and Su, Wen and Wang, Zengfu},
  booktitle={AAAI},
  pages={11354--11361},
  year={2020}
}
[CVPR-2021] UnrealPerson: An adaptive pipeline for costless person re-identification

UnrealPerson: An Adaptive Pipeline for Costless Person Re-identification In our paper (arxiv), we propose a novel pipeline, UnrealPerson, that decreas

ZhangTianyu 70 Oct 10, 2022
Official code for "Towards An End-to-End Framework for Flow-Guided Video Inpainting" (CVPR2022)

E2FGVI (CVPR 2022) English | 简体中文 This repository contains the official implementation of the following paper: Towards An End-to-End Framework for Flo

Media Computing Group @ Nankai University 537 Jan 07, 2023
FedTorch is an open-source Python package for distributed and federated training of machine learning models using PyTorch distributed API

FedTorch is a generic repository for benchmarking different federated and distributed learning algorithms using PyTorch Distributed API.

Machine Learning and Optimization Lab @PennState 136 Dec 23, 2022
A Number Recognition algorithm

Paddle-VisualAttention Results_Compared SVHN Dataset Methods Steps GPU Batch Size Learning Rate Patience Decay Step Decay Rate Training Speed (FPS) Ac

1 Nov 12, 2021
Provably Rare Gem Miner.

Provably Rare Gem Miner just another random project by yoyoismee.eth useful link main site market contract useful thing you should know read contract

34 Nov 22, 2022
Code for the paper "Attention Approximates Sparse Distributed Memory"

Attention Approximates Sparse Distributed Memory - Codebase This is all of the code used to run analyses in the paper "Attention Approximates Sparse D

Trenton Bricken 14 Dec 05, 2022
Official implementation of NeurIPS 2021 paper "One Loss for All: Deep Hashing with a Single Cosine Similarity based Learning Objective"

Official implementation of NeurIPS 2021 paper "One Loss for All: Deep Hashing with a Single Cosine Similarity based Learning Objective"

Ng Kam Woh 71 Dec 22, 2022
Conflict-aware Inference of Python Compatible Runtime Environments with Domain Knowledge Graph, ICSE 2022

PyCRE Conflict-aware Inference of Python Compatible Runtime Environments with Domain Knowledge Graph, ICSE 2022 Dependencies This project is developed

<a href=[email protected]"> 7 May 06, 2022
The code for our paper "AutoSF: Searching Scoring Functions for Knowledge Graph Embedding"

AutoSF The code for our paper "AutoSF: Searching Scoring Functions for Knowledge Graph Embedding" and this paper has been accepted by ICDE2020. News:

AutoML Research 64 Dec 17, 2022
Fully Automatic Page Turning on Real Scores

Fully Automatic Page Turning on Real Scores This repository contains the corresponding code for our extended abstract Henkel F., Schwaiger S. and Widm

Florian Henkel 7 Jan 02, 2022
ExCon: Explanation-driven Supervised Contrastive Learning

ExCon: Explanation-driven Supervised Contrastive Learning Link to the paper: https://arxiv.org/pdf/2111.14271.pdf Contributors of this repo: Zhibo Zha

Zhibo (Darren) Zhang 18 Nov 01, 2022
PyTorch implementation of the paper:A Convolutional Approach to Melody Line Identification in Symbolic Scores.

Symbolic Melody Identification This repository is an unofficial PyTorch implementation of the paper:A Convolutional Approach to Melody Line Identifica

Sophia Y. Chou 3 Feb 21, 2022
Perform zero-order Hankel Transform for an 1D array (float or real valued).

perform zero-order Hankel Transform for an 1D array (float or real valued). An discrete form of Parseval theorem is guaranteed. Suit for iterative problems.

1 Jan 17, 2022
Official code of the paper "ReDet: A Rotation-equivariant Detector for Aerial Object Detection" (CVPR 2021)

ReDet: A Rotation-equivariant Detector for Aerial Object Detection ReDet: A Rotation-equivariant Detector for Aerial Object Detection (CVPR2021), Jiam

csuhan 334 Dec 23, 2022
Multi-Scale Vision Longformer: A New Vision Transformer for High-Resolution Image Encoding

Vision Longformer This project provides the source code for the vision longformer paper. Multi-Scale Vision Longformer: A New Vision Transformer for H

Microsoft 209 Dec 30, 2022
[IROS2021] NYU-VPR: Long-Term Visual Place Recognition Benchmark with View Direction and Data Anonymization Influences

NYU-VPR This repository provides the experiment code for the paper Long-Term Visual Place Recognition Benchmark with View Direction and Data Anonymiza

Automation and Intelligence for Civil Engineering (AI4CE) Lab @ NYU 22 Sep 28, 2022
BOVText: A Large-Scale, Multidimensional Multilingual Dataset for Video Text Spotting

BOVText: A Large-Scale, Bilingual Open World Dataset for Video Text Spotting Updated on December 10, 2021 (Release all dataset(2021 videos)) Updated o

weijiawu 47 Dec 26, 2022
Differential Privacy for Heterogeneous Federated Learning : Utility & Privacy tradeoffs

Differential Privacy for Heterogeneous Federated Learning : Utility & Privacy tradeoffs In this work, we propose an algorithm DP-SCAFFOLD(-warm), whic

19 Nov 10, 2022
ICS 4u HD project, start before-wards. A curtain shooting game using python.

Touhou-Star-Salvation HDCH ICS 4u HD project, start before-wards. A curtain shooting game using python and pygame. By Jason Li For arts and gameplay,

15 Dec 22, 2022
Code for our paper "MG-GAN: A Multi-Generator Model Preventing Out-of-Distribution Samples in Pedestrian Trajectory Prediction" published at ICCV 2021.

MG-GAN: A Multi-Generator Model Preventing Out-of-Distribution Samples in Pedestrian Trajectory Prediction This repository contains the code for the p

Sven 30 Jan 05, 2023