Clean Machine Learning, a Coding Kata

Overview

Kata: Clean Machine Learning From Dirty Code

First, open the Kata in Google Colab (or else download it)

You can clone this project and launch jupyter-notebook, or use the files in Google Colab here:

You may want to do File > Save a copy in Drive... in Colab to edit your own copy of the file.


Kata 1: Refactor Dirty ML Code into Pipeline

Let's convert dirty machine learning code into clean code using a Pipeline - which is the Pipe and Filter Design Pattern for Machine Learning.

At first you may still wonder why using this Design Patterns is good. You'll realize just how good it is in the 2nd Clean Machine Learning Kata when you'll do AutoML. Pipelines will give you the ability to easily manage the hyperparameters and the hyperparameter space, on a per-step basis. You'll also have the good code structure for training, saving, reloading, and deploying using any library you want without hitting a wall when it'll come to serializing your whole trained pipeline for deploying in prod.

The Dataset

It'll be downloaded automatically for you in the code below.

We're using a Human Activity Recognition (HAR) dataset captured using smartphones. The dataset can be found on the UCI Machine Learning Repository.

The task

Classify the type of movement amongst six categories from the phones' sensor data:

  • WALKING,
  • WALKING_UPSTAIRS,
  • WALKING_DOWNSTAIRS,
  • SITTING,
  • STANDING,
  • LAYING.

Video dataset overview

Follow this link to see a video of the 6 activities recorded in the experiment with one of the participants:

Video of the experiment

[Watch video]

Details about the input data

The dataset's description goes like this:

The sensor signals (accelerometer and gyroscope) were pre-processed by applying noise filters and then sampled in fixed-width sliding windows of 2.56 sec and 50% overlap (128 readings/window). The sensor acceleration signal, which has gravitational and body motion components, was separated using a Butterworth low-pass filter into body acceleration and gravity. The gravitational force is assumed to have only low frequency components, therefore a filter with 0.3 Hz cutoff frequency was used.

Reference:

Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra and Jorge L. Reyes-Ortiz. A Public Domain Dataset for Human Activity Recognition Using Smartphones. 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013. Bruges, Belgium 24-26 April 2013.

That said, I will use the almost raw data: only the gravity effect has been filtered out of the accelerometer as a preprocessing step for another 3D feature as an input to help learning. If you'd ever want to extract the gravity by yourself, you could use the following Butterworth Low-Pass Filter (LPF) and edit it to have the right cutoff frequency of 0.3 Hz which is a good frequency for activity recognition from body sensors.

Here is how the 3D data cube looks like. So we'll have a train and a test data cube, and might create validation data cubes as well:

So we have 3D data of shape [batch_size, time_steps, features]. If this and the above is still unclear to you, you may want to learn more on the 3D shape of time series data.

Loading the Dataset

import urllib
import os

def download_import(filename):
    with open(filename, "wb") as f:
        # Downloading like that is needed because of Colab operating from a Google Drive folder that is only "shared with you".
        url = 'https://raw.githubusercontent.com/Neuraxio/Kata-Clean-Machine-Learning-From-Dirty-Code/master/{}'.format(filename)
        f.write(urllib.request.urlopen(url).read())

try:
    import google.colab
    download_import("data_loading.py")
    !mkdir data;
    download_import("data/download_dataset.py")
    print("Downloaded .py files: dataset loaders.")
except:
    print("No dynamic .py file download needed: not in a Colab.")

DATA_PATH = "data/"
!pwd && ls
os.chdir(DATA_PATH)
!pwd && ls
!python download_dataset.py
!pwd && ls
os.chdir("..")
!pwd && ls
DATASET_PATH = DATA_PATH + "UCI HAR Dataset/"
print("\n" + "Dataset is now located at: " + DATASET_PATH)
# install neuraxle if needed:
try:
    import neuraxle
    assert neuraxle.__version__ == '0.3.4'
except:
    !pip install neuraxle==0.3.4
# Finally load dataset!
from data_loading import load_all_data
X_train, y_train, X_test, y_test = load_all_data()
print("Dataset loaded!")

Let's now define and execute our ugly code:

You don't need to change the functions here just below. We'll rather code this again after in the next section.

import numpy as np
from sklearn.metrics import accuracy_score
from sklearn.tree import DecisionTreeClassifier


def get_fft_peak_infos(real_fft, time_bins_axis=-2):
    """
    Extract the indices of the bins with maximal amplitude, and the corresponding amplitude values.

    :param fft: real magnitudes of an fft. It could be of shape [N, bins, features].
    :param time_bins_axis: axis of the frequency bins (e.g.: time axis before fft).
    :return: Two arrays without bins. One is an int, the other is a float. Shape: ([N, features], [N, features])
    """
    peak_bin = np.argmax(real_fft, axis=time_bins_axis)
    peak_bin_val = np.max(real_fft, axis=time_bins_axis)
    return peak_bin, peak_bin_val


def fft_magnitudes(data_inputs, time_axis=-2):
    """
    Apply a Fast Fourier Transform operation to analyze frequencies, and return real magnitudes.
    The bins past the half (past the nyquist frequency) are discarded, which result in shorter time series.

    :param data_inputs: ND array of dimension at least 1. For instance, this could be of shape [N, time_axis, features]
    :param time_axis: axis along which the time series evolve
    :return: real magnitudes of the data_inputs. For instance, this could be of shape [N, (time_axis / 2) + 1, features]
             so here, we have `bins = (time_axis / 2) + 1`.
    """
    fft = np.fft.rfft(data_inputs, axis=time_axis)
    real_fft = np.absolute(fft)
    return real_fft


def get_fft_features(x_data):
    """
    Will featurize data with an FFT.

    :param x_data: 3D time series of shape [batch_size, time_steps, sensors]
    :return: featurized time series with FFT of shape [batch_size, features]
    """
    real_fft = fft_magnitudes(x_data)
    flattened_fft = real_fft.reshape(real_fft.shape[0], -1)
    peak_bin, peak_bin_val = get_fft_peak_infos(real_fft)
    return flattened_fft, peak_bin, peak_bin_val


def featurize_data(x_data):
    """
    Will convert 3D time series of shape [batch_size, time_steps, sensors] to shape [batch_size, features]
    to prepare data for machine learning.

    :param x_data: 3D time series of shape [batch_size, time_steps, sensors]
    :return: featurized time series of shape [batch_size, features]
    """
    print("Input shape before feature union:", x_data.shape)

    flattened_fft, peak_bin, peak_bin_val = get_fft_features(x_data)
    mean = np.mean(x_data, axis=-2)
    median = np.median(x_data, axis=-2)
    min = np.min(x_data, axis=-2)
    max = np.max(x_data, axis=-2)

    featurized_data = np.concatenate([
        flattened_fft,
        peak_bin,
        peak_bin_val,
        mean,
        median,
        min,
        max,
    ], axis=-1)

    print("Shape after feature union, before classification:", featurized_data.shape)
    return featurized_data

Let's now use the ugly code to do ugly machine learning with it.

Fit:

# Shape: [batch_size, time_steps, sensor_features]
X_train_featurized = featurize_data(X_train)
# Shape: [batch_size, remade_features]

classifier = DecisionTreeClassifier()
classifier.fit(X_train_featurized, y_train)

Predict:

# Shape: [batch_size, time_steps, sensor_features]
X_test_featurized = featurize_data(X_test)
# Shape: [batch_size, remade_features]

y_pred = classifier.predict(X_test_featurized)
print("Shape at output after classification:", y_pred.shape)
# Shape: [batch_size]

Eval:

accuracy = accuracy_score(y_pred=y_pred, y_true=y_test)
print("Accuracy of ugly pipeline code:", accuracy)

Cleaning Up: Define Pipeline Steps and a Pipeline

The kata is to fill the classes below and to use them properly in the pipeline thereafter.

There are some missing classes as well that you should define.

from neuraxle.base import BaseStep, NonFittableMixin
from neuraxle.steps.numpy import NumpyConcatenateInnerFeatures, NumpyShapePrinter, NumpyFlattenDatum

class NumpyFFT(NonFittableMixin, BaseStep):
    def transform(self, data_inputs):
        """
        Featurize time series data with FFT.

        :param data_inputs: time series data of 3D shape: [batch_size, time_steps, sensors_readings]
        :return: featurized data is of 2D shape: [batch_size, n_features]
        """
        transformed_data = np.fft.rfft(data_inputs, axis=-2)
        return transformed_data


class FFTPeakBinWithValue(NonFittableMixin, BaseStep):
    def transform(self, data_inputs):
        """
        Will compute peak fft bins (int), and their magnitudes' value (float), to concatenate them.

        :param data_inputs: real magnitudes of an fft. It could be of shape [batch_size, bins, features].
        :return: Two arrays without bins concatenated on feature axis. Shape: [batch_size, 2 * features]
        """
        time_bins_axis = -2
        peak_bin = np.argmax(data_inputs, axis=time_bins_axis)
        peak_bin_val = np.max(data_inputs, axis=time_bins_axis)
        
        # Notice that here another FeatureUnion could have been used with a joiner:
        transformed = np.concatenate([peak_bin, peak_bin_val], axis=-1)
        
        return transformed


class NumpyMedian(NonFittableMixin, BaseStep):
    def transform(self, data_inputs):
        """
        Will featurize data with a median.

        :param data_inputs: 3D time series of shape [batch_size, time_steps, sensors]
        :return: featurized time series of shape [batch_size, features]
        """
        return np.median(data_inputs, axis=-2)


class NumpyMean(NonFittableMixin, BaseStep):
    def transform(self, data_inputs):
        """
        Will featurize data with a mean.

        :param data_inputs: 3D time series of shape [batch_size, time_steps, sensors]
        :return: featurized time series of shape [batch_size, features]
        """
        raise NotImplementedError("TODO")
        return ...

Let's now create the Pipeline with the code:

from neuraxle.base import Identity
from neuraxle.pipeline import Pipeline
from neuraxle.steps.flow import TrainOnlyWrapper
from neuraxle.union import FeatureUnion

pipeline = Pipeline([
    # ToNumpy(),  # Cast type in case it was a list.
    # For debugging, do this print at train-time only:
    TrainOnlyWrapper(NumpyShapePrinter(custom_message="Input shape before feature union")),
    # Shape: [batch_size, time_steps, sensor_features]
    FeatureUnion([
        # TODO in kata 1: Fill the classes in this FeatureUnion here and make them work.
        #      Note that you may comment out some of those feature classes
        #      temporarily and reactivate them one by one.
        Pipeline([
            NumpyFFT(),
            NumpyAbs(),  # do `np.abs` here.
            FeatureUnion([
                NumpyFlattenDatum(),  # Reshape from 3D to flat 2D: flattening data except on batch size
                FFTPeakBinWithValue()  # Extract 2D features from the 3D FFT bins
            ], joiner=NumpyConcatenateInnerFeatures())
        ]),
        NumpyMean(),
        NumpyMedian(),
        NumpyMin(),
        NumpyMax()
    ], joiner=NumpyConcatenateInnerFeatures()),  # The joiner will here join like this: np.concatenate([...], axis=-1)
    # TODO, optional: Add some feature selection right here for the motivated ones:
    #      https://scikit-learn.org/stable/modules/feature_selection.html
    TrainOnlyWrapper(NumpyShapePrinter(custom_message="Shape after feature union, before classification")),
    # Shape: [batch_size, remade_features]
    # TODO: use an `Inherently multiclass` classifier here from:
    #       https://scikit-learn.org/stable/modules/multiclass.html
    YourClassifier(),
    TrainOnlyWrapper(NumpyShapePrinter(custom_message="Shape at output after classification")),
    # Shape: [batch_size]
    Identity()
])

Test Your Code: Make the Tests Pass

The 3rd test is the real deal.

0.7 if __name__ == '__main__': tests = [_test_is_pipeline, _test_has_all_data_preprocessors, _test_pipeline_words_and_has_ok_score] for t in tests: try: t(pipeline) print("==> Test '{}(pipeline)' succeed!".format(t.__name__)) except Exception as e: print("==> Test '{}(pipeline)' failed:".format(t.__name__)) import traceback print(traceback.format_exc()) ">
def _test_is_pipeline(pipeline):
    assert isinstance(pipeline, Pipeline)


def _test_has_all_data_preprocessors(pipeline):
    assert "DecisionTreeClassifier" in pipeline
    assert "FeatureUnion" in pipeline
    assert "Pipeline" in pipeline["FeatureUnion"]
    assert "NumpyMean" in pipeline["FeatureUnion"]
    assert "NumpyMedian" in pipeline["FeatureUnion"]
    assert "NumpyMin" in pipeline["FeatureUnion"]
    assert "NumpyMax" in pipeline["FeatureUnion"]


def _test_pipeline_words_and_has_ok_score(pipeline):
    pipeline = pipeline.fit(X_train, y_train)
    
    y_pred = pipeline.predict(X_test)
    
    accuracy = accuracy_score(y_test, y_pred)
    print("Test accuracy score:", accuracy)
    assert accuracy > 0.7


if __name__ == '__main__':
    tests = [_test_is_pipeline, _test_has_all_data_preprocessors, _test_pipeline_words_and_has_ok_score]
    for t in tests:
        try:
            t(pipeline)
            print("==> Test '{}(pipeline)' succeed!".format(t.__name__))
        except Exception as e:
            print("==> Test '{}(pipeline)' failed:".format(t.__name__))
            import traceback
            print(traceback.format_exc())

Good job!

Your code should now be clean after making the tests pass.

You're ready for the Kata 2.

You should now be ready for the 2nd Clean Machine Learning Kata. Note that the solutions are available in the repository above as well. You may use the links to the Google Colab files to try to solve the Katas.


Recommended additional readings and learning resources:

Owner
Neuraxio
Neuraxio
The Official PyTorch Implementation of "VAEBM: A Symbiosis between Variational Autoencoders and Energy-based Models" (ICLR 2021 spotlight paper)

Official PyTorch implementation of "VAEBM: A Symbiosis between Variational Autoencoders and Energy-based Models" (ICLR 2021 Spotlight Paper) Zhisheng

NVIDIA Research Projects 45 Dec 26, 2022
A PaddlePaddle version of Neural Renderer, refer to its PyTorch version

Neural 3D Mesh Renderer in PadddlePaddle A PaddlePaddle version of Neural Renderer, refer to its PyTorch version Install Run: pip install neural-rende

AgentMaker 13 Jul 12, 2022
PyTorch implementation for the visual prior component (i.e. perception module) of the Visually Grounded Physics Learner [Li et al., 2020].

VGPL-Visual-Prior PyTorch implementation for the visual prior component (i.e. perception module) of the Visually Grounded Physics Learner (VGPL). Give

Toru 8 Dec 29, 2022
implementation of paper - You Only Learn One Representation: Unified Network for Multiple Tasks

YOLOR implementation of paper - You Only Learn One Representation: Unified Network for Multiple Tasks To reproduce the results in the paper, please us

Kin-Yiu, Wong 1.8k Jan 04, 2023
The reference baseline of final exam for XMU machine learning course

Mini-NICO Baseline The baseline is a reference method for the final exam of machine learning course. Requirements Installation we use /python3.7 /torc

JoaquinChou 3 Dec 29, 2021
ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation

ENet in Caffe Execution times and hardware requirements Network 1024x512 1280x720 Parameters Model size (fp32) ENet 20.4 ms 32.9 ms 0.36 M 1.5 MB SegN

Timo Sämann 561 Jan 04, 2023
Applicator Kit for Modo allow you to apply Apple ARKit Face Tracking data from your iPhone or iPad to your characters in Modo.

Applicator Kit for Modo Applicator Kit for Modo allow you to apply Apple ARKit Face Tracking data from your iPhone or iPad with a TrueDepth camera to

Andrew Buttigieg 3 Aug 24, 2021
Code for the paper "Reinforced Active Learning for Image Segmentation"

Reinforced Active Learning for Image Segmentation (RALIS) Code for the paper Reinforced Active Learning for Image Segmentation Dependencies python 3.6

Arantxa Casanova 79 Dec 19, 2022
Implementation of "Large Steps in Inverse Rendering of Geometry"

Large Steps in Inverse Rendering of Geometry ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia), December 2021. Baptiste Nicolet · Alec Jacob

RGL: Realistic Graphics Lab 274 Jan 06, 2023
Fast mesh denoising with data driven normal filtering using deep variational autoencoders

Fast mesh denoising with data driven normal filtering using deep variational autoencoders This is an implementation for the paper entitled "Fast mesh

9 Dec 02, 2022
LexGLUE: A Benchmark Dataset for Legal Language Understanding in English

LexGLUE: A Benchmark Dataset for Legal Language Understanding in English ⚖️ 🏆 🧑‍🎓 👩‍⚖️ Dataset Summary Inspired by the recent widespread use of th

95 Dec 08, 2022
This is the implementation of "SELF SUPERVISED REPRESENTATION LEARNING WITH DEEP CLUSTERING FOR ACOUSTIC UNIT DISCOVERY FROM RAW SPEECH" submitted to ICASSP 2022

CPC_DeepCluster This is the implementation of "SELF SUPERVISED REPRESENTATION LEARNING WITH DEEP CLUSTERING FOR ACOUSTIC UNIT DISCOVERY FROM RAW SPEEC

LEAP Lab 2 Sep 15, 2022
《LXMERT: Learning Cross-Modality Encoder Representations from Transformers》(EMNLP 2020)

The Most Important Thing. Our code is developed based on: LXMERT: Learning Cross-Modality Encoder Representations from Transformers

53 Dec 16, 2022
Example scripts for the detection of lanes using the ultra fast lane detection model in Tensorflow Lite.

TFlite Ultra Fast Lane Detection Inference Example scripts for the detection of lanes using the ultra fast lane detection model in Tensorflow Lite. So

Ibai Gorordo 12 Aug 27, 2022
AdaFocus (ICCV 2021) Adaptive Focus for Efficient Video Recognition

AdaFocus (ICCV 2021) This repo contains the official code and pre-trained models for AdaFocus. Adaptive Focus for Efficient Video Recognition Referenc

Rainforest Wang 115 Dec 21, 2022
Nicely is a real-time Feedback and Intervention Program Depression is a prevalent issue across all age groups, socioeconomic classes, and cultural identities.

Nicely is a real-time Feedback and Intervention Program Depression is a prevalent issue across all age groups, socioeconomic classes, and cultural identities.

1 Jan 16, 2022
The Wearables Development Toolkit - a development environment for activity recognition applications with sensor signals

Wearables Development Toolkit (WDK) The Wearables Development Toolkit (WDK) is a framework and set of tools to facilitate the iterative development of

Juan Haladjian 114 Nov 27, 2022
Interactive web apps created using geemap and streamlit

geemap-apps Introduction This repo demostrates how to build a multi-page Earth Engine App using streamlit and geemap. You can deploy the app on variou

Qiusheng Wu 27 Dec 23, 2022
EasyMocap is an open-source toolbox for markerless human motion capture from RGB videos.

EasyMocap is an open-source toolbox for markerless human motion capture from RGB videos. In this project, we provide the basic code for fitt

ZJU3DV 2.2k Jan 05, 2023
Unofficial PyTorch Implementation of "DOLG: Single-Stage Image Retrieval with Deep Orthogonal Fusion of Local and Global Features"

Pytorch Implementation of Deep Orthogonal Fusion of Local and Global Features (DOLG) This is the unofficial PyTorch Implementation of "DOLG: Single-St

DK 96 Jan 06, 2023