PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models

Related tags

Deep Learningpulse
Overview

PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models

Code accompanying CVPR'20 paper of the same title. Paper link: https://arxiv.org/pdf/2003.03808.pdf

NOTE

We have noticed a lot of concern that PULSE will be used to identify individuals whose faces have been blurred out. We want to emphasize that this is impossible - PULSE makes imaginary faces of people who do not exist, which should not be confused for real people. It will not help identify or reconstruct the original image.

We also want to address concerns of bias in PULSE. We have now included a new section in the paper and an accompanying model card directly addressing this bias.


Transformation Preview Transformation Preview Transformation Preview

Table of Contents

What does it do?

Given a low-resolution input image, PULSE searches the outputs of a generative model (here, StyleGAN) for high-resolution images that are perceptually realistic and downscale correctly.

Transformation Preview

Usage

The main file of interest for applying PULSE is run.py. A full list of arguments with descriptions can be found in that file; here we describe those relevant to getting started.

Prereqs

You will need to install cmake first (required for dlib, which is used for face alignment). Currently the code only works with CUDA installed (and therefore requires an appropriate GPU) and has been tested on Linux and Windows. For the full set of required Python packages, create a Conda environment from the provided YAML, e.g.

conda create -f pulse.yml 

or (Anaconda on Windows):

conda env create -n pulse -f pulse.yml
conda activate pulse

In some environments (e.g. on Windows), you may have to edit the pulse.yml to remove the version specific hash on each dependency and remove any dependency that still throws an error after running conda env create... (such as readline)

dependencies
  - blas=1.0=mkl
  ...

to

dependencies
  - blas=1.0
 ...

Finally, you will need an internet connection the first time you run the code as it will automatically download the relevant pretrained model from Google Drive (if it has already been downloaded, it will use the local copy). In the event that the public Google Drive is out of capacity, add the files to your own Google Drive instead; get the share URL and replace the ID in the https://drive.google.com/uc?=ID links in align_face.py and PULSE.py with the new file ids from the share URL given by your own Drive file.

Data

By default, input data for run.py should be placed in ./input/ (though this can be modified). However, this assumes faces have already been aligned and downscaled. If you have data that is not already in this form, place it in realpics and run align_face.py which will automatically do this for you. (Again, all directories can be changed by command line arguments if more convenient.) You will at this stage pic a downscaling factor.

Note that if your data begins at a low resolution already, downscaling it further will retain very little information. In this case, you may wish to bicubically upsample (usually, to 1024x1024) and allow align_face.py to downscale for you.

Applying PULSE

Once your data is appropriately formatted, all you need to do is

python run.py

Enjoy!

Owner
Alex Damian
Alex Damian
Towards Debiasing NLU Models from Unknown Biases

Towards Debiasing NLU Models from Unknown Biases Abstract: NLU models often exploit biased features to achieve high dataset-specific performance witho

Ubiquitous Knowledge Processing Lab 22 Jun 14, 2022
Robocop is your personal mini voice assistant made using Python.

Robocop-VoiceAssistant To use this project, you should have python installed in your system. If you don't have python installed, install it beforehand

Sohil Khanduja 3 Feb 26, 2022
Free-duolingo-plus - Duolingo account creator that uses your invite code to get you free duolingo plus

free-duolingo-plus duolingo account creator that uses your invite code to get yo

1 Jan 06, 2022
Code for the ICML 2021 paper: "ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision"

ViLT Code for the paper: "ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision" Install pip install -r requirements.txt pip

Wonjae Kim 922 Jan 01, 2023
Using Machine Learning to Create High-Res Fine Art

BIG.art: Using Machine Learning to Create High-Res Fine Art How to use GLIDE and BSRGAN to create ultra-high-resolution paintings with fine details By

Robert A. Gonsalves 13 Nov 27, 2022
PyTorch implementation for our NeurIPS 2021 Spotlight paper "Long Short-Term Transformer for Online Action Detection".

Long Short-Term Transformer for Online Action Detection Introduction This is a PyTorch implementation for our NeurIPS 2021 Spotlight paper "Long Short

77 Dec 16, 2022
CVPR2020 Counterfactual Samples Synthesizing for Robust VQA

CVPR2020 Counterfactual Samples Synthesizing for Robust VQA This repo contains code for our paper "Counterfactual Samples Synthesizing for Robust Visu

72 Dec 22, 2022
Code for Mining the Benefits of Two-stage and One-stage HOI Detection

Status: Archive (code is provided as-is, no updates expected) PPO-EWMA [Paper] This is code for training agents using PPO-EWMA and PPG-EWMA, introduce

OpenAI 33 Dec 15, 2022
Facial Action Unit Intensity Estimation via Semantic Correspondence Learning with Dynamic Graph Convolution

FAU Implementation of the paper: Facial Action Unit Intensity Estimation via Semantic Correspondence Learning with Dynamic Graph Convolution. Yingruo

Evelyn 78 Nov 29, 2022
Inhomogeneous Social Recommendation with Hypergraph Convolutional Networks

Inhomogeneous Social Recommendation with Hypergraph Convolutional Networks This is our Pytorch implementation for the paper: Zirui Zhu, Chen Gao, Xu C

Zirui Zhu 3 Dec 30, 2022
TipToiDog - Tip Toi Dog With Python

TipToiDog Was ist dieses Projekt? Meine 5-jährige Tochter spielt sehr gerne das

1 Feb 07, 2022
Age and Gender prediction using Keras

cnn_age_gender Age and Gender prediction using Keras Dataset example : Description : UTKFace dataset is a large-scale face dataset with long age span

XN3UR0N 58 May 03, 2022
EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation

EFENet EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation Code is a bit messy now. I woud clean up soon. For training the EF

Yaping Zhao 19 Nov 05, 2022
Example how to deploy deep learning model with aiohttp.

aiohttp-demos Demos for aiohttp project. Contents Imagetagger Deep Learning Image Classifier URL shortener Toxic Comments Classifier Moderator Slack B

aio-libs 661 Jan 04, 2023
TAPEX: Table Pre-training via Learning a Neural SQL Executor

TAPEX: Table Pre-training via Learning a Neural SQL Executor The official repository which contains the code and pre-trained models for our paper TAPE

Microsoft 157 Dec 28, 2022
MMdnn is a set of tools to help users inter-operate among different deep learning frameworks. E.g. model conversion and visualization. Convert models between Caffe, Keras, MXNet, Tensorflow, CNTK, PyTorch Onnx and CoreML.

MMdnn MMdnn is a comprehensive and cross-framework tool to convert, visualize and diagnose deep learning (DL) models. The "MM" stands for model manage

Microsoft 5.7k Jan 09, 2023
PySLM Python Library for Selective Laser Melting and Additive Manufacturing

PySLM Python Library for Selective Laser Melting and Additive Manufacturing PySLM is a Python library for supporting development of input files used i

Dr Luke Parry 35 Dec 27, 2022
The official PyTorch implementation for the paper "sMGC: A Complex-Valued Graph Convolutional Network via Magnetic Laplacian for Directed Graphs".

Magnetic Graph Convolutional Networks About The official PyTorch implementation for the paper sMGC: A Complex-Valued Graph Convolutional Network via M

3 Feb 25, 2022
An implementation of "Optimal Textures: Fast and Robust Texture Synthesis and Style Transfer through Optimal Transport"

Optex An implementation of Optimal Textures: Fast and Robust Texture Synthesis and Style Transfer through Optimal Transport for TU Delft CS4240. You c

Hans Brouwer 33 Jan 05, 2023
A complete speech segmentation system using Kaldi and x-vectors for voice activity detection (VAD) and speaker diarisation.

bbc-speech-segmenter: Voice Activity Detection & Speaker Diarization A complete speech segmentation system using Kaldi and x-vectors for voice activit

BBC 16 Oct 27, 2022