This package implements the algorithms introduced in Smucler, Sapienza, and Rotnitzky (2020) to compute optimal adjustment sets in causal graphical models.

Overview

optimaladj: A library for computing optimal adjustment sets in causal graphical models

This package implements the algorithms introduced in Smucler, Sapienza and Rotnitzky (2021) and Smucler and Rotnitzky (2022) to compute optimal adjustment sets in causal graphical models. The package provides a class, called CasualGraph, that inherits from networkx's DiGraph class and has methods to compute: the optimal, optimal minimal, optimal minimum cardinality and optimal minimum cost adjustment sets for individualized treatment rules (point exposure dynamic treatment regimes) in non-parametric causal graphical models with latent variables.

Suppose we are given a causal graph G specifying:

  • a treatment variable A,
  • an outcome variable Y,
  • a set of observable (that is, non-latent) variables N,
  • a set of observable variables that will be used to allocate treatment L, and possibly
  • positive costs associated with each observable variable.

Suppose moreover that there exists at least one adjustment set with respect to A and Y in G that is comprised of observable variables.

An optimal adjustment set is an observable adjustment set that yields the non-parametric estimator of the interventional mean with the smallest asymptotic variance among those that are based on observable adjustment sets.

An optimal minimal adjustment set is an observable adjustment set that yields the non-parametric estimator of the interventional mean with the smallest asymptotic variance among those that are based on observable minimal adjustment sets. An observable minimal adjustment set is a valid adjustment set such that all its variables are observable and the removal of any variable from it destroys validity.

An optimal minimum cardinality adjustment set is an observable adjustment set that has minimum possible cardinality and yields the non-parametric estimator of the interventional mean with the smallest asymptotic variance among those that are based on observable minimum cardinality adjustment sets.

An optimal minimum cost adjustment set is defined similarly, being optimal in the class of observable adjustment sets that have minimum possible cost.

Under these assumptions, Smucler, Sapienza and Rotnitzky (2020) and Smucler and Rotnitzky (2022) show that optimal minimal, optimal minimum cardinality and optimal minimum cost adjustment sets always exist, and can be computed in polynomial time. They also provide a sufficient criterion for the existance of an optimal adjustment set and a polynomial time algorithm to compute it when it exists.

Check out our notebook with examples.

Installation

You can install the stable version of the package from PyPI by running

pip install optimaladj

You can install the development version of the package from Github by running

pip install git+https://github.com/facusapienza21/optimaladj.git#egg=optimaladj
Owner
Facundo Sapienza
PhD Student at UC Berkeley interested in Machine Learning and Physics. Previously studied Physics and Mathematics in the University of Buenos Aires
Facundo Sapienza
unofficial pytorch implement of "Squareplus: A Softplus-Like Algebraic Rectifier"

SquarePlus (Pytorch implement) unofficial pytorch implement of "Squareplus: A Softplus-Like Algebraic Rectifier" SquarePlus Squareplus is a Softplus-L

SeeFun 3 Dec 29, 2021
Some pvbatch (paraview) scripts for postprocessing OpenFOAM data

pvbatchForFoam Some pvbatch (paraview) scripts for postprocessing OpenFOAM data For every script there is a help message available: pvbatch pv_state_s

Morev Ilya 2 Oct 26, 2022
⚾🤖⚾ Automatic baseball pitching overlay in realtime

⚾ Automatically overlaying pitch motion and trajectory with machine learning! This project takes your baseball pitching clips and automatically genera

Tony Chou 240 Dec 05, 2022
Towards Interpretable Deep Metric Learning with Structural Matching

DIML Created by Wenliang Zhao*, Yongming Rao*, Ziyi Wang, Jiwen Lu, Jie Zhou This repository contains PyTorch implementation for paper Towards Interpr

Wenliang Zhao 75 Nov 11, 2022
Unofficial PyTorch Implementation of "DOLG: Single-Stage Image Retrieval with Deep Orthogonal Fusion of Local and Global Features"

Pytorch Implementation of Deep Orthogonal Fusion of Local and Global Features (DOLG) This is the unofficial PyTorch Implementation of "DOLG: Single-St

DK 96 Jan 06, 2023
Let's create a tool to convert Thailand budget from PDF to CSV.

thailand-budget-pdf2csv Let's create a tool to convert Thailand Government Budgeting from PDF to CSV! รวมพลัง Dev แปลงงบ จาก PDF สู่ Machine-readable

Kao.Geek 88 Dec 19, 2022
Optical Character Recognition + Instance Segmentation for russian and english languages

Распознавание рукописного текста в школьных тетрадях Соревнование, проводимое в рамках олимпиады НТО, разработанное Сбером. Платформа ODS. Результаты

Gerasimov Maxim 21 Dec 19, 2022
This is the code of using DQN to play Sekiro .

Update for using DQN to play sekiro 2021.2.2(English Version) This is the code of using DQN to play Sekiro . I am very glad to tell that I have writen

144 Dec 25, 2022
Basit bir burç modülü.

Bu modulu burclar hakkinda gundelik bir sekilde bilgi alin diye yaptim ve sizler icin kullanima sunuyorum. Modulun kullanimi asiri basit: Ornek Kullan

Special 17 Jun 08, 2022
Human Pose Detection on EdgeTPU

Coral PoseNet Pose estimation refers to computer vision techniques that detect human figures in images and video, so that one could determine, for exa

google-coral 476 Dec 31, 2022
Project repo for the paper SILT: Self-supervised Lighting Transfer Using Implicit Image Decomposition

SILT: Self-supervised Lighting Transfer Using Implicit Image Decomposition (BMVC 2021) Project repo for the paper SILT: Self-supervised Lighting Trans

6 Dec 04, 2022
💃 VALSE: A Task-Independent Benchmark for Vision and Language Models Centered on Linguistic Phenomena

💃 VALSE: A Task-Independent Benchmark for Vision and Language Models Centered on Linguistic Phenomena.

Heidelberg-NLP 17 Nov 07, 2022
Combining Latent Space and Structured Kernels for Bayesian Optimization over Combinatorial Spaces

This repository contains source code for the paper Combining Latent Space and Structured Kernels for Bayesian Optimization over Combinatorial Spaces a

9 Nov 21, 2022
ROCKET: Exceptionally fast and accurate time series classification using random convolutional kernels

ROCKET + MINIROCKET ROCKET: Exceptionally fast and accurate time series classification using random convolutional kernels. Data Mining and Knowledge D

298 Dec 26, 2022
Python implementation of Bayesian optimization over permutation spaces.

Bayesian Optimization over Permutation Spaces This repository contains the source code and the resources related to the paper "Bayesian Optimization o

Aryan Deshwal 9 Dec 23, 2022
FairEdit: Preserving Fairness in Graph Neural Networks through Greedy Graph Editing

FairEdit Relevent Publication FairEdit: Preserving Fairness in Graph Neural Networks through Greedy Graph Editing

5 Feb 04, 2022
Human Activity Recognition example using TensorFlow on smartphone sensors dataset and an LSTM RNN. Classifying the type of movement amongst six activity categories - Guillaume Chevalier

LSTMs for Human Activity Recognition Human Activity Recognition (HAR) using smartphones dataset and an LSTM RNN. Classifying the type of movement amon

Guillaume Chevalier 3.1k Dec 30, 2022
Gender Classification Machine Learning Model using Sk-learn in Python with 97%+ accuracy and deployment

Gender-classification This is a ML model to classify Male and Females using some physical characterstics Data. Python Libraries like Pandas,Numpy and

Aryan raj 11 Oct 16, 2022
Deploying PyTorch Model to Production with FastAPI in CUDA-supported Docker

Deploying PyTorch Model to Production with FastAPI in CUDA-supported Docker A example FastAPI PyTorch Model deploy with nvidia/cuda base docker. Model

Ming 68 Jan 04, 2023
Code for EMNLP 2021 paper Contrastive Out-of-Distribution Detection for Pretrained Transformers.

Contra-OOD Code for EMNLP 2021 paper Contrastive Out-of-Distribution Detection for Pretrained Transformers. Requirements PyTorch Transformers datasets

Wenxuan Zhou 27 Oct 28, 2022