Code reproduce for paper "Vehicle Re-identification with Viewpoint-aware Metric Learning"

Related tags

Deep LearningVANET
Overview

VANET

Code reproduce for paper "Vehicle Re-identification with Viewpoint-aware Metric Learning"

Introduction

This is the implementation of article VANet "Vehicle Re-identification with Viewpoint-aware Metric Learning", which support both single-branch training and two branch training.

Implementation details

The whole implementation is based on PVEN project(https://github.com/silverbulletmdc/PVEN). The key code block added and modified are mainly distributed as follows:

For network construction:
    This project provide two version of backbone, namely 'googlenet' and 'resnet50' respectively. There the corresponding configuration files 
    as well as other corresponding code interfence are all provided completely.
    code location: vehicle_reid_pytorch/models/vanet.py

For training:
    This project provide two mode of training, namely 'single branch(baseline of VANet)' and 'two branch(VANet)' respectively
    code location: examples/parsing_reid/main_vanet_single_branch.py
    code location: examples/parsing_reid/main_vanet_two_branch.py

Configuration files:
    code location: examples/parsing_reid/configs/veri776_b64_baseline_vanet_single_branch_resnet.yml
    code location: examples/parsing_reid/configs/veri776_b64_baseline_vanet_two_branch_resnet.yml
    code location: examples/parsing_reid/configs/veri776_b64_baseline_vanet_two_branch_googlenet.yml

For loss calculation:
    code location: vehicle_reid_pytorch/loss/triplet_loss.py

For evaluation:
    mAP, cmc, ..., hist distribution figure drawing function are included.
    code location: examples/parsing_reid/math_tools.py

Results comparasion

We have achieved the following preformance by using the method this paper 'VANET' provided.

     -------------------------- -----------------------------------
                  |    mAP    |   rank-1  |   rank-5  |  rank-10  |
     --------------------------------- ----------------------------
      VANET+BOT   |   80.1%   |   96.5    |   98.5    |    99.4   | 
     --------------------------------------------------------------
      BOT(ours)   |   77.8%   |   95.3    |   97.8    |    98.8   |
     --------------------------------------------------------------
      BOT[1]      |   78.2%   |   95.5    |   97.9    |      *    |
     --------------------------------------------------------------

Note: The 'BOT', which means "bag of tricks" proposed by paper[2]. With respect to the two branch implementation of the above "VANET+BOT", we adopted the first 6 layers of the official resnet50 as the shared_conv network, the remaining two layers as the branch_conv network.There are also instructions in the corresponding code when you use.

Also, four type data's(similar-view_same-id, similar-view_different-id, different-view_different-id, different-view_same-id) distribution are drawn based on paper's aspect. note: this visualization code can be founded at examples/parsing_reid/math_tools.py

1. Get started

All the results are tested on VeRi-776 dstasets. Please reference to the environment implementation of other general reid projects, this project reference to fast-reid's.

2. Training

Reference to folder run_sh/run_main_XXX.sh Note: If you want to use your own dataset for training, remember to keep your data's structure be consistent with the veri776 dataloader's output in this project, reference to realted code for more details.

Example:

  sh ./run_sh/run_main_vanet_two_branch_resnet.sh

3. evaluation

Reference to folder run_sh/run_eval_XXX.sh Note: We have add 'drawing hist graph' function in evaluated stage, if you needn't this statistic operation temporarily, remember to shut down this function, for the operation is to some extent time-consuming, detail code block are located in examples/parsing_reid/math_tools.py.

Example:

  sh ./run_sh/run_eval_two_branch_resnet.sh

reference

[1] Khorramshahi, Pirazh, et al. "The devil is in the details: Self-supervised attention for vehicle re-identification." European Conference on Computer Vision. Springer, Cham, 2020.

[2] Luo, Hao, et al. "Bag of tricks and a strong baseline for deep person re-identification." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. 2019.

Contact

For any question, please file an issue or contact

Shichao Liu (Shanghai Em-Data Technology Co., Ltd.) [email protected]
Owner
EMDATA-AILAB
EMDATA-AILAB
A PyTorch Implementation of SphereFace.

SphereFace A PyTorch Implementation of SphereFace. The code can be trained on CASIA-Webface and the best accuracy on LFW is 99.22%. SphereFace: Deep H

carwin 685 Dec 09, 2022
A Home Assistant custom component for Lobe. Lobe is an AI tool that can classify images.

Lobe This is a Home Assistant custom component for Lobe. Lobe is an AI tool that can classify images. This component lets you easily use an exported m

Kendell R 4 Feb 28, 2022
Human Detection - Pedestrian Detection using OpenCV Python

Pedestrian Detection using OpenCV Python Follow us on Instagram for Machine Lear

Hrishikesh Dutta 1 Jan 23, 2022
code for Image Manipulation Detection by Multi-View Multi-Scale Supervision

MVSS-Net Code and models for ICCV 2021 paper: Image Manipulation Detection by Multi-View Multi-Scale Supervision Update 22.02.17, Pretrained model for

dong_chengbo 131 Dec 30, 2022
Code for paper PairRE: Knowledge Graph Embeddings via Paired Relation Vectors.

PairRE Code for paper PairRE: Knowledge Graph Embeddings via Paired Relation Vectors. This implementation of PairRE for Open Graph Benchmak datasets (

Alipay 65 Dec 19, 2022
Learning to Map Large-scale Sparse Graphs on Memristive Crossbar

Release of AutoGMap:Learning to Map Large-scale Sparse Graphs on Memristive Crossbar For reproduction of our searched model, the Ubuntu OS is recommen

2 Aug 23, 2022
CTC segmentation python package

CTC segmentation CTC segmentation can be used to find utterances alignments within large audio files. This repository contains the ctc-segmentation py

Ludwig Kürzinger 217 Jan 04, 2023
WORD: Revisiting Organs Segmentation in the Whole Abdominal Region

WORD: Revisiting Organs Segmentation in the Whole Abdominal Region. This repository provides the codebase and dataset for our work WORD: Revisiting Or

Healthcare Intelligence Laboratory 71 Jan 07, 2023
ICON: Implicit Clothed humans Obtained from Normals

ICON: Implicit Clothed humans Obtained from Normals arXiv, December 2021. Yuliang Xiu · Jinlong Yang · Dimitrios Tzionas · Michael J. Black Table of C

Yuliang Xiu 1.1k Dec 30, 2022
Garbage Detection system which will detect objects based on whether it is plastic waste or plastics or just garbage.

Garbage Detection using Yolov5 on Jetson Nano 2gb Developer Kit. Garbage detection system which will detect objects based on whether it is plastic was

Rishikesh A. Bondade 2 May 13, 2022
The pytorch implementation of DG-Font: Deformable Generative Networks for Unsupervised Font Generation

DG-Font: Deformable Generative Networks for Unsupervised Font Generation The source code for 'DG-Font: Deformable Generative Networks for Unsupervised

130 Dec 05, 2022
Deep Image Matting implementation in PyTorch

Deep Image Matting Deep Image Matting paper implementation in PyTorch. Differences "fc6" is dropped. Indices pooling. "fc6" is clumpy, over 100 millio

Yang Liu 724 Dec 27, 2022
Code and models for "Pano3D: A Holistic Benchmark and a Solid Baseline for 360 Depth Estimation", OmniCV Workshop @ CVPR21.

Pano3D A Holistic Benchmark and a Solid Baseline for 360o Depth Estimation Pano3D is a new benchmark for depth estimation from spherical panoramas. We

Visual Computing Lab, Information Technologies Institute, Centre for Reseach and Technology Hellas 50 Dec 29, 2022
Learnable Multi-level Frequency Decomposition and Hierarchical Attention Mechanism for Generalized Face Presentation Attack Detection

LMFD-PAD Note This is the official repository of the paper: LMFD-PAD: Learnable Multi-level Frequency Decomposition and Hierarchical Attention Mechani

28 Dec 02, 2022
Repository for the paper : Meta-FDMixup: Cross-Domain Few-Shot Learning Guided byLabeled Target Data

1 Meta-FDMIxup Repository for the paper : Meta-FDMixup: Cross-Domain Few-Shot Learning Guided byLabeled Target Data. (ACM MM 2021) paper News! the rep

Fu Yuqian 44 Nov 18, 2022
Supplemental learning materials for "Fourier Feature Networks and Neural Volume Rendering"

Fourier Feature Networks and Neural Volume Rendering This repository is a companion to a lecture given at the University of Cambridge Engineering Depa

Matthew A Johnson 133 Dec 26, 2022
[ECCV 2020] XingGAN for Person Image Generation

Contents XingGAN or CrossingGAN Installation Dataset Preparation Generating Images Using Pretrained Model Train and Test New Models Evaluation Acknowl

Hao Tang 218 Oct 29, 2022
An unsupervised learning framework for depth and ego-motion estimation from monocular videos

SfMLearner This codebase implements the system described in the paper: Unsupervised Learning of Depth and Ego-Motion from Video Tinghui Zhou, Matthew

Tinghui Zhou 1.8k Dec 30, 2022
Official Pytorch implementation of "CLIPstyler:Image Style Transfer with a Single Text Condition"

CLIPstyler Official Pytorch implementation of "CLIPstyler:Image Style Transfer with a Single Text Condition" Environment Pytorch 1.7.1, Python 3.6 $ c

201 Dec 29, 2022
Zero-Cost Proxies for Lightweight NAS

Zero-Cost-NAS Companion code for the ICLR2021 paper: Zero-Cost Proxies for Lightweight NAS tl;dr A single minibatch of data is used to score neural ne

SamsungLabs 108 Dec 20, 2022