Code for our paper "MG-GAN: A Multi-Generator Model Preventing Out-of-Distribution Samples in Pedestrian Trajectory Prediction" published at ICCV 2021.

Related tags

Deep LearningMG-GAN
Overview

MG-GAN: A Multi-Generator Model Preventing Out-of-Distribution Samples in Pedestrian Trajectory Prediction

This repository contains the code for the paper

MG-GAN: A Multi-Generator Model Preventing Out-of-Distribution Samples in Pedestrian Trajectory Prediction
Patrick Dendorfer*, Sven Elflein*, Laura Leal-Taixé (* equal contribution)
International Conference on Computer Vision (ICCV), 2021

Motivation

The distribution over future trajectories of pedestrians is often multi-modal and does not have connected support (a).

We found that single generator GANs introduce out-of-distribution (OOD) samples in this case due to GANs mapping the continuous latent variable z with a continuous function (b). These OOD samples might introduce unforseen behavior in real world applications, such as autonomous driving.

To resolve this problem, we propose to learn the target distribution in a piecewise manner using multiple generators, effectively preventing OOD samples (c).

Model

Our model consists of four key components: Encoding modules, Attention modules, and our novel contribution PM-Network learning a distribution over multiple Generators.


Setup

First, setup Python environment

conda create -f environment.yml -n mggan
conda activate mggan

Then, download the datasets (data.zip) from here and unzip in the root of this repository

unzip data.zip

which will create a folder ./data/datasets.

Training

Models can be trained using the script mggan/model/train.py using the following command

python mggan/models/pinet_multi_generator/train.py --name <name_of_experiment> --num_gens <number_of_generators>  --dataset <dataset_name> --epochs 50

This generates a output folder in ./logs/<name_of_experiment> with Tensorboard logs and the model checkpoints. You can use tensorboard --logdir ./logs/<name_of_experiment> to monitor the training process.

Evaluation

For evaluation of metrics (ADE, FDE, Precison, Recall) for k=1 to k=20 predictions, use

python scripts/evaluate.py --model_path <path_to_model_directory>  --output_folder <folder_to_store_result_csv>

One can use --eval-set <dataset_name> to evaluate models on other test sets than the dataset the model was trained on. This is useful to evaluate the BIWI models on the Garden of Forking Paths dataset (gofp) for which we report results in the paper.

Pre-trained models

We provide pre-trained models for MG-GAN with 2-8 generators together with the training configurations, on the BIWI datasets and Stanford Drone dataset (SDD) here.

Citation

If our work is useful to you, please consider citing

@inproceedings{dendorfer2021iccv,
  title={MG-GAN: A Multi-Generator Model Preventing Out-of-Distribution Samples in Pedestrian Trajectory Prediction}, 
  author={Dendorfer, Patrick and Elflein, Sven and Leal-Taixé, Laura},
  month={October}
  year={2021},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
  }
You might also like...
The implementation of the algorithm in the paper "Safe Deep Semi-Supervised Learning for Unseen-Class Unlabeled Data" published in ICML 2020.

DS3L This is the code for paper "Safe Deep Semi-Supervised Learning for Unseen-Class Unlabeled Data" published in ICML 2020. Setups The code is implem

This is the repo for the paper `SumGNN: Multi-typed Drug Interaction Prediction via Efficient Knowledge Graph Summarization'. (published in Bioinformatics'21)

SumGNN: Multi-typed Drug Interaction Prediction via Efficient Knowledge Graph Summarization This is the code for our paper ``SumGNN: Multi-typed Drug

Code for ICCV 2021 paper
Code for ICCV 2021 paper "Distilling Holistic Knowledge with Graph Neural Networks"

HKD Code for ICCV 2021 paper "Distilling Holistic Knowledge with Graph Neural Networks" cifia-100 result The implementation of compared methods are ba

code for ICCV 2021 paper 'Generalized Source-free Domain Adaptation'

G-SFDA Code (based on pytorch 1.3) for our ICCV 2021 paper 'Generalized Source-free Domain Adaptation'. [project] [paper]. Dataset preparing Download

Code for ICCV 2021 paper: ARAPReg: An As-Rigid-As Possible Regularization Loss for Learning Deformable Shape Generators..
Code for ICCV 2021 paper: ARAPReg: An As-Rigid-As Possible Regularization Loss for Learning Deformable Shape Generators..

ARAPReg Code for ICCV 2021 paper: ARAPReg: An As-Rigid-As Possible Regularization Loss for Learning Deformable Shape Generators.. Installation The cod

Code for the ICCV 2021 paper
Code for the ICCV 2021 paper "Pixel Difference Networks for Efficient Edge Detection" (Oral).

Pixel Difference Convolution This repository contains the PyTorch implementation for "Pixel Difference Networks for Efficient Edge Detection" by Zhuo

Sync2Gen Code for ICCV 2021 paper: Scene Synthesis via Uncertainty-Driven Attribute Synchronization
Sync2Gen Code for ICCV 2021 paper: Scene Synthesis via Uncertainty-Driven Attribute Synchronization

Sync2Gen Code for ICCV 2021 paper: Scene Synthesis via Uncertainty-Driven Attribute Synchronization 0. Environment Environment: python 3.6 and cuda 10

Code for the paper "Spatio-temporal Self-Supervised Representation Learning for 3D Point Clouds" (ICCV 2021)

Spatio-temporal Self-Supervised Representation Learning for 3D Point Clouds This is the official code implementation for the paper "Spatio-temporal Se

Code release for ICCV 2021 paper
Code release for ICCV 2021 paper "Anticipative Video Transformer"

Anticipative Video Transformer Ranked first in the Action Anticipation task of the CVPR 2021 EPIC-Kitchens Challenge! (entry: AVT-FB-UT) [project page

Comments
  • request to visualizer

    request to visualizer

    Hello author! I admire your work and would like to reproduce your results. There is a small requirement here that needs to trouble you. Do you have a visual code, which has shown the effect in your paper. Thanks again for your work and contributions!

    opened by 12num 0
  • Question regarding Garden of Forking Path Dataset

    Question regarding Garden of Forking Path Dataset

    Hello,

    I see there are more scenes in the test set (ETH, Hotel, and ZARA1) than the train set (ETH) in your pre-processed dataset of GOFP. Could you kindly elaborate on why it is that?

    Thanks, Sourav Das

    opened by SodaCoder 0
  • Question about ETH&UCY Dataset

    Question about ETH&UCY Dataset

    Hi, I notice that trajectories in some datasets are not consistent with provided in Social GAN. May I ask how do you preprocess your data? It will be helpful to conduct my experiments in a fair environment. Thanks!

    opened by HRHLALALA 1
  • Reproducible MG-GAN code for the FPD dataset

    Reproducible MG-GAN code for the FPD dataset

    Hello Patrick, Sven,

    This is Sourav Das, a 1st year Ph.D. student at the University of Padova, Italy.

    This Github repository has the reproducible implementation for the datasets: ETH, Hotel, Social_Stanford_Synthetic, Stanford, Univ, Zara1, Zara2, and GOFP.

    I would like to reproduce the results on FPD datasets also. Could you kindly share with me the code with support for the FPD dataset?

    Here is my Github: https://github.com/SodaCoder

    Thanks in advance,

    opened by SodaCoder 1
Releases(1.0)
Owner
Sven
Studying Computer Science at Technical University of Munich. Interested in Machine Learning Research.
Sven
Process JSON files for neural recording sessions using Medtronic's BrainSense Percept PC neurostimulator

percept_processing This code processes JSON files for streamed neural data using Medtronic's Percept PC neurostimulator with BrainSense Technology for

Maria Olaru 3 Jun 06, 2022
When in Doubt: Improving Classification Performance with Alternating Normalization

When in Doubt: Improving Classification Performance with Alternating Normalization Findings of EMNLP 2021 Menglin Jia, Austin Reiter, Ser-Nam Lim, Yoa

Menglin Jia 13 Nov 06, 2022
[CVPR'20] TTSR: Learning Texture Transformer Network for Image Super-Resolution

TTSR Official PyTorch implementation of the paper Learning Texture Transformer Network for Image Super-Resolution accepted in CVPR 2020. Contents Intr

Multimedia Research 689 Dec 28, 2022
A Rao-Blackwellized Particle Filter for 6D Object Pose Tracking

PoseRBPF: A Rao-Blackwellized Particle Filter for 6D Object Pose Tracking PoseRBPF Paper Self-supervision Paper Pose Estimation Video Robot Manipulati

NVIDIA Research Projects 107 Dec 25, 2022
Wileless-PDGNet Implementation

Wileless-PDGNet Implementation This repo is related to the following paper: Boning Li, Ananthram Swami, and Santiago Segarra, "Power allocation for wi

6 Oct 04, 2022
Denoising images with Fourier Ring Correlation loss

Denoising images with Fourier Ring Correlation loss The python code accompanies the working manuscript Image quality measurements and denoising using

2 Mar 12, 2022
paper list in the area of reinforcenment learning for recommendation systems

paper list in the area of reinforcenment learning for recommendation systems

HenryZhao 23 Jun 09, 2022
Repositorio de los Laboratorios de Análisis Numérico / Análisis Numérico I de FAMAF, UNC.

Repositorio de los Laboratorios de Análisis Numérico / Análisis Numérico I de FAMAF, UNC. Para los Laboratorios de la materia, vamos a utilizar el len

Luis Biedma 18 Dec 12, 2022
A Python reference implementation of the CF data model

cfdm A Python reference implementation of the CF data model. References Compliance with FAIR principles Documentation https://ncas-cms.github.io/cfdm

NCAS CMS 25 Dec 13, 2022
Quantify the difference between two arbitrary curves in space

similaritymeasures Quantify the difference between two arbitrary curves Curves in this case are: discretized by inidviudal data points ordered from a

Charles Jekel 175 Jan 08, 2023
PyTorch CZSL framework containing GQA, the open-world setting, and the CGE and CompCos methods.

Compositional Zero-Shot Learning This is the official PyTorch code of the CVPR 2021 works Learning Graph Embeddings for Compositional Zero-shot Learni

EML Tübingen 70 Dec 27, 2022
Code for paper [ACE: Ally Complementary Experts for Solving Long-Tailed Recognition in One-Shot] (ICCV 2021, oral))

ACE: Ally Complementary Experts for Solving Long-Tailed Recognition in One-Shot This repository is the official PyTorch implementation of ICCV-21 pape

Jiarui 21 May 09, 2022
An implementation for the ICCV 2021 paper Deep Permutation Equivariant Structure from Motion.

Deep Permutation Equivariant Structure from Motion Paper | Poster This repository contains an implementation for the ICCV 2021 paper Deep Permutation

72 Dec 27, 2022
Simple node deletion tool for onnx.

snd4onnx Simple node deletion tool for onnx. I only test very miscellaneous and limited patterns as a hobby. There are probably a large number of bugs

Katsuya Hyodo 6 May 15, 2022
A PyTorch Implementation of FaceBoxes

FaceBoxes in PyTorch By Zisian Wong, Shifeng Zhang A PyTorch implementation of FaceBoxes: A CPU Real-time Face Detector with High Accuracy. The offici

Zi Sian Wong 797 Dec 17, 2022
A geometric deep learning pipeline for predicting protein interface contacts.

A geometric deep learning pipeline for predicting protein interface contacts.

44 Dec 30, 2022
Run containerized, rootless applications with podman

Why? restrict scope of file system access run any application without root privileges creates usable "Desktop applications" to integrate into your nor

119 Dec 27, 2022
CR-Fill: Generative Image Inpainting with Auxiliary Contextual Reconstruction. ICCV 2021

crfill Usage | Web App | | Paper | Supplementary Material | More results | code for paper ``CR-Fill: Generative Image Inpainting with Auxiliary Contex

182 Dec 20, 2022
BankNote-Net: Open dataset and encoder model for assistive currency recognition

BankNote-Net: Open Dataset for Assistive Currency Recognition Millions of people around the world have low or no vision. Assistive software applicatio

Microsoft 13 Oct 28, 2022