Garbage classification using structure data.

Overview

垃圾分类模型使用说明

1.包含以下数据文件

文件 描述
data/MaterialMapping.csv 物体以及其归类的信息
data/TestRecords 光谱原始测试数据 CSV 文件
data/TestRecordDesc.zip CSV 文件描述文件
data/Boundaries.csv 物体轮廓信息

2.包含以下模型文件

文件夹 描述
output/Category/ 包含预测大类别的分类模型
output/Material/ 包含预测大类别(4类)的分类模型
output/Backgroud/ 包含预测小类别(50类)的分类模型

3.环境配置

  进入garbage路径,在anaconda命令行运行pip install -r requirements.txt

4.数据预处理

  在anaconda命令行运行python data_preprocess.py,即可在data文件夹中生成AllEmbracingDataset.csv。若将来更新数据,按照和原来相同的格式和路径保存在data文件夹中,即可用data_preprocess.py生成更新后的数据集

  • 运行数据预处理Python脚本,将上述数据的信息集合到一个数据文件中
python code/data_preprocess.py -data_dir D:/datasets/garbage \
                        -test \
                        -groupbyObjID

运行脚本生成的数据文件 datasets/AllEmbracingDataset.csv 数据集

5.模型训练Python脚本

python code/train_gbdt_lr.py -data_dir D:/datasets/garbage/ \
                    -use_groupbyID True \
                    -output_dir output/ \
                    -skip_data_preprocess

其他 Python脚本说明:

  • feature_engineering.py 特征工程代码
  • ref.py 数据处理和模型推理所需的配置文件
  • utils.py 数据处理所需的一些函数
  • gbdt_feature.py 用gbdt模型生成特征

6.模型推理Python脚本

python code/predict_gbdt_lr.py -data_dir D:/datasets/garbage/ \
                    -use_groupbyID True \
                    -output_dir output/ \
                    -skip_data_preprocess \
                    -save_dir output/ 

  注1:只要同一个ObjID的多条数据的预测结果有一个不是背景零,最终预测结果就不是背景零。

  注2:预测出的Material只会是在训练数据中出现过的唯一标记号。这次数据中不同的唯一标记号共有148个,具体可参见output/log/log.txt中的LabelEncoder.classes

  • 预测结果文件(predictions.csv)说明:对每个物体(即每个ObjID,通常对应多条测试记录)给出多个预测结果汇总后的预测结果。
# 域名 意义
1 ObjID 被测物体唯一标记。同一物体会对应多条测试记录
2 Category 物体分类,从训练数据中获取
3 Material 物体对应的唯一标识号,从训练数据中获取
4 pred_Category 模型所预测出的物体分类
5 pred_Material 模型所预测出的物体唯一标识号
6 pred_background 模型预测的背景和物体 (背景标记为 0,物体标记为 1)
7 pred_Category_final 模型所预测出的物体分类
8 pred_Material_final 模型所预测出的物体材料分类

7. 模型精度

  对于Category、Material和Background三种场景的预测,我们均使用GBDT+LR模型。尝试过SVM、XGBoost、LightGBM和GBDT+LR模型,对比之下,GBDT+LR模型表现最好。   在测试集上的Accuracy如下:

场景 Accuracy
Category 0.7583130575831306
Material 0.6042173560421735
Background 0.996044825313118
Owner
wenqi
Learning is all you need!
wenqi
Hcaptcha-challenger - Gracefully face hCaptcha challenge with Yolov5(ONNX) embedded solution

hCaptcha Challenger 🚀 Gracefully face hCaptcha challenge with Yolov5(ONNX) embe

593 Jan 03, 2023
CDGAN: Cyclic Discriminative Generative Adversarial Networks for Image-to-Image Transformation

CDGAN CDGAN: Cyclic Discriminative Generative Adversarial Networks for Image-to-Image Transformation CDGAN Implementation in PyTorch This is the imple

Kancharagunta Kishan Babu 6 Apr 19, 2022
Predicting the duration of arrival delays for commercial flights.

Flight Delay Prediction Our objective is to predict arrival delays of commercial flights. According to the US Department of Transportation, about 21%

Jordan Silke 1 Jan 11, 2022
This codebase is the official implementation of Test-Time Classifier Adjustment Module for Model-Agnostic Domain Generalization (NeurIPS2021, Spotlight)

Test-Time Classifier Adjustment Module for Model-Agnostic Domain Generalization This codebase is the official implementation of Test-Time Classifier A

47 Dec 28, 2022
Implementation for Curriculum DeepSDF

Curriculum-DeepSDF This repository is an implementation for Curriculum DeepSDF. Full paper is available here. Preparation Please follow original setti

Haidong Zhu 69 Dec 29, 2022
A pytorch &keras implementation and demo of Fastformer.

Fastformer Notes from the authors Pytorch/Keras implementation of Fastformer. The keras version only includes the core fastformer attention part. The

153 Dec 28, 2022
Blender Python - Node-based multi-line text and image flowchart

MindMapper v0.8 Node-based text and image flowchart for Blender Mindmap with shortcuts visible: Mindmap with shortcuts hidden: Notes This was requeste

SpectralVectors 58 Oct 08, 2022
JudeasRx - graphical app for doing personalized causal medicine using the methods invented by Judea Pearl et al.

JudeasRX Instructions Read the references given in the Theory and Notation section below Fire up the Jupyter Notebook judeas-rx.ipynb The notebook dra

Robert R. Tucci 19 Nov 07, 2022
NLMpy - A Python package to create neutral landscape models

NLMpy is a Python package for the creation of neutral landscape models that are widely used by landscape ecologists to model ecological patterns

Manaaki Whenua – Landcare Research 1 Oct 08, 2022
ICNet and PSPNet-50 in Tensorflow for real-time semantic segmentation

Real-Time Semantic Segmentation in TensorFlow Perform pixel-wise semantic segmentation on high-resolution images in real-time with Image Cascade Netwo

Oles Andrienko 219 Nov 21, 2022
Awesome Human Pose Estimation

Human Pose Estimation Related Publication

Zhe Wang 1.2k Dec 26, 2022
This is the source code of the solver used to compete in the International Timetabling Competition 2019.

ITC2019 Solver This is the source code of the solver used to compete in the International Timetabling Competition 2019. Building .NET Core (2.1 or hig

Edon Gashi 8 Jan 22, 2022
Code for our work "Activation to Saliency: Forming High-Quality Labels for Unsupervised Salient Object Detection".

A2S-USOD Code for our work "Activation to Saliency: Forming High-Quality Labels for Unsupervised Salient Object Detection". Code will be released upon

15 Dec 16, 2022
Sarus implementation of classical ML models. The models are implemented using the Keras API of tensorflow 2. Vizualization are implemented and can be seen in tensorboard.

Sarus published models Sarus implementation of classical ML models. The models are implemented using the Keras API of tensorflow 2. Vizualization are

Sarus Technologies 39 Aug 19, 2022
The codes I made while I practiced various TensorFlow examples

TensorFlow_Exercises The codes I made while I practiced various TensorFlow examples About the codes I didn't create these codes by myself, but re-crea

Terry Taewoong Um 614 Dec 08, 2022
This repository contains the official code of the paper Equivariant Subgraph Aggregation Networks (ICLR 2022)

Equivariant Subgraph Aggregation Networks (ESAN) This repository contains the official code of the paper Equivariant Subgraph Aggregation Networks (IC

Beatrice Bevilacqua 59 Dec 13, 2022
Bayesian regularization for functional graphical models.

BayesFGM Paper: Jiajing Niu, Andrew Brown. Bayesian regularization for functional graphical models. Requirements R version 3.6.3 and up Python 3.6 and

0 Oct 07, 2021
KAPAO is an efficient multi-person human pose estimation model that detects keypoints and poses as objects and fuses the detections to predict human poses.

KAPAO (Keypoints and Poses as Objects) KAPAO is an efficient single-stage multi-person human pose estimation model that models keypoints and poses as

Will McNally 664 Dec 30, 2022
Revisting Open World Object Detection

Revisting Open World Object Detection Installation See INSTALL.md. Dataset Our new data division is based on COCO2017. We divide the training set into

58 Dec 23, 2022