VarCLR: Variable Semantic Representation Pre-training via Contrastive Learning

Overview
   

Unittest GitHub stars GitHub license Black

VarCLR: Variable Representation Pre-training via Contrastive Learning

New: Paper accepted by ICSE 2022. Preprint at arXiv!

This repository contains code and pre-trained models for VarCLR, a contrastive learning based approach for learning semantic representations of variable names that effectively captures variable similarity, with state-of-the-art results on [email protected].

Step 0: Install

pip install -e .

Step 1: Load a Pre-trained VarCLR Model

from varclr.models import Encoder
model = Encoder.from_pretrained("varclr-codebert")

Step 2: VarCLR Variable Embeddings

Get embedding of one variable

emb = model.encode("squareslab")
print(emb.shape)
# torch.Size([1, 768])

Get embeddings of list of variables (supports batching)

emb = model.encode(["squareslab", "strudel"])
print(emb.shape)
# torch.Size([2, 768])

Step 2: Get VarCLR Similarity Scores

Get similarity scores of N variable pairs

print(model.score("squareslab", "strudel"))
# [0.42812108993530273]
print(model.score(["squareslab", "average", "max", "max"], ["strudel", "mean", "min", "maximum"]))
# [0.42812108993530273, 0.8849745988845825, 0.8035818338394165, 0.889922022819519]

Get pairwise (N * M) similarity scores from two lists of variables

variable_list = ["squareslab", "strudel", "neulab"]
print(model.cross_score("squareslab", variable_list))
# [[1.0000007152557373, 0.4281214475631714, 0.7207341194152832]]
print(model.cross_score(variable_list, variable_list))
# [[1.0000007152557373, 0.4281214475631714, 0.7207341194152832],
#  [0.4281214475631714, 1.0000004768371582, 0.549992561340332],
#  [0.7207341194152832, 0.549992561340332, 1.000000238418579]]

Step 3: Reproduce IdBench Benchmark Results

Load the IdBench benchmark

from varclr.benchmarks import Benchmark

# Similarity on IdBench-Medium
b1 = Benchmark.build("idbench", variant="medium", metric="similarity")
# Relatedness on IdBench-Large
b2 = Benchmark.build("idbench", variant="large", metric="relatedness")

Compute VarCLR scores and evaluate

id1_list, id2_list = b1.get_inputs()
predicted = model.score(id1_list, id2_list)
print(b1.evaluate(predicted))
# {'spearmanr': 0.5248567181503295, 'pearsonr': 0.5249843473193132}

print(b2.evaluate(model.score(*b2.get_inputs())))
# {'spearmanr': 0.8012168379981921, 'pearsonr': 0.8021791703187449}

Let's compare with the original CodeBERT

codebert = Encoder.from_pretrained("codebert")
print(b1.evaluate(codebert.score(*b1.get_inputs())))
# {'spearmanr': 0.2056582946575104, 'pearsonr': 0.1995058696927054}
print(b2.evaluate(codebert.score(*b2.get_inputs())))
# {'spearmanr': 0.3909218857993804, 'pearsonr': 0.3378219622284688}

Results on IdBench benchmarks

Similarity

Method Small Medium Large
FT-SG 0.30 0.29 0.28
LV 0.32 0.30 0.30
FT-cbow 0.35 0.38 0.38
VarCLR-Avg 0.47 0.45 0.44
VarCLR-LSTM 0.50 0.49 0.49
VarCLR-CodeBERT 0.53 0.53 0.51
Combined-IdBench 0.48 0.59 0.57
Combined-VarCLR 0.66 0.65 0.62

Relatedness

Method Small Medium Large
LV 0.48 0.47 0.48
FT-SG 0.70 0.71 0.68
FT-cbow 0.72 0.74 0.73
VarCLR-Avg 0.67 0.66 0.66
VarCLR-LSTM 0.71 0.70 0.69
VarCLR-CodeBERT 0.79 0.79 0.80
Combined-IdBench 0.71 0.78 0.79
Combined-VarCLR 0.79 0.81 0.85

Pre-train your own VarCLR models

Coming soon.

Cite

If you find VarCLR useful in your research, please cite our [email protected]:

@misc{chen2021varclr,
      title={VarCLR: Variable Semantic Representation Pre-training via Contrastive Learning},
      author={Qibin Chen and Jeremy Lacomis and Edward J. Schwartz and Graham Neubig and Bogdan Vasilescu and Claire Le Goues},
      year={2021},
      eprint={2112.02650},
      archivePrefix={arXiv},
      primaryClass={cs.SE}
}
Owner
squaresLab
squaresLab
Implementation of Hire-MLP: Vision MLP via Hierarchical Rearrangement and An Image Patch is a Wave: Phase-Aware Vision MLP.

Hire-Wave-MLP.pytorch Implementation of Hire-MLP: Vision MLP via Hierarchical Rearrangement and An Image Patch is a Wave: Phase-Aware Vision MLP Resul

Nevermore 29 Oct 28, 2022
MDMM - Learning multi-domain multi-modality I2I translation

Multi-Domain Multi-Modality I2I translation Pytorch implementation of multi-modality I2I translation for multi-domains. The project is an extension to

Hsin-Ying Lee 107 Nov 04, 2022
RealFormer-Pytorch Implementation of RealFormer using pytorch

RealFormer-Pytorch Implementation of RealFormer using pytorch. Includes comparison with classical Transformer on image classification task (ViT) wrt C

Simo Ryu 90 Dec 08, 2022
这是一个unet-pytorch的源码,可以训练自己的模型

Unet:U-Net: Convolutional Networks for Biomedical Image Segmentation目标检测模型在Pytorch当中的实现 目录 性能情况 Performance 所需环境 Environment 注意事项 Attention 文件下载 Downl

Bubbliiiing 567 Jan 05, 2023
An extremely simple, intuitive, hardware-friendly, and well-performing network structure for LiDAR semantic segmentation on 2D range image. IROS21

FIDNet_SemanticKITTI Motivation Implementing complicated network modules with only one or two points improvement on hardware is tedious. So here we pr

YimingZhao 54 Dec 12, 2022
Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021)

Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021) The implementation of Reducing Infromation Bottleneck for W

Jungbeom Lee 81 Dec 16, 2022
Code of the paper "Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition"

SEW (Squeezed and Efficient Wav2vec) The repo contains the code of the paper "Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speec

ASAPP Research 67 Dec 01, 2022
Adaptive Denoising Training (ADT) for Recommendation.

DenoisingRec Adaptive Denoising Training for Recommendation. This is the pytorch implementation of our paper at WSDM 2021: Denoising Implicit Feedback

Wenjie Wang 51 Dec 30, 2022
1st place solution to the Satellite Image Change Detection Challenge hosted by SenseTime

1st place solution to the Satellite Image Change Detection Challenge hosted by SenseTime

Lihe Yang 209 Jan 01, 2023
This Repostory contains the pretrained DTLN-aec model for real-time acoustic echo cancellation.

This Repostory contains the pretrained DTLN-aec model for real-time acoustic echo cancellation.

Nils L. Westhausen 182 Jan 07, 2023
Sequence to Sequence (seq2seq) Recurrent Neural Network (RNN) for Time Series Forecasting

Sequence to Sequence (seq2seq) Recurrent Neural Network (RNN) for Time Series Forecasting Note: You can find here the accompanying seq2seq RNN forecas

Guillaume Chevalier 1k Dec 25, 2022
An pytorch implementation of Masked Autoencoders Are Scalable Vision Learners

An pytorch implementation of Masked Autoencoders Are Scalable Vision Learners This is a coarse version for MAE, only make the pretrain model, the fine

FlyEgle 214 Dec 29, 2022
Code to reproduce the results in the paper "Tensor Component Analysis for Interpreting the Latent Space of GANs".

Tensor Component Analysis for Interpreting the Latent Space of GANs [ paper | project page ] Code to reproduce the results in the paper "Tensor Compon

James Oldfield 4 Jun 17, 2022
Python library for science observations from the James Webb Space Telescope

JWST Calibration Pipeline JWST requires Python 3.7 or above and a C compiler for dependencies. Linux and MacOS platforms are tested and supported. Win

Space Telescope Science Institute 386 Dec 30, 2022
Code repo for EMNLP21 paper "Zero-Shot Information Extraction as a Unified Text-to-Triple Translation"

Zero-Shot Information Extraction as a Unified Text-to-Triple Translation Source code repo for paper Zero-Shot Information Extraction as a Unified Text

cgraywang 88 Dec 31, 2022
Benchmark library for high-dimensional HPO of black-box models based on Weighted Lasso regression

LassoBench LassoBench is a library for high-dimensional hyperparameter optimization benchmarks based on Weighted Lasso regression. Note: LassoBench is

Kenan Šehić 5 Mar 15, 2022
TransFGU: A Top-down Approach to Fine-Grained Unsupervised Semantic Segmentation

TransFGU: A Top-down Approach to Fine-Grained Unsupervised Semantic Segmentation Zhaoyun Yin, Pichao Wang, Fan Wang, Xianzhe Xu, Hanling Zhang, Hao Li

DamoCV 25 Dec 16, 2022
AutoML library for deep learning

Official Website: autokeras.com AutoKeras: An AutoML system based on Keras. It is developed by DATA Lab at Texas A&M University. The goal of AutoKeras

Keras 8.7k Jan 08, 2023
HSC4D: Human-centered 4D Scene Capture in Large-scale Indoor-outdoor Space Using Wearable IMUs and LiDAR. CVPR 2022

HSC4D: Human-centered 4D Scene Capture in Large-scale Indoor-outdoor Space Using Wearable IMUs and LiDAR. CVPR 2022 [Project page | Video] Getting sta

51 Nov 29, 2022
Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. CVPR 2018

Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning Tensorflow code and models for the paper: Large Scale Fine-Grained Categ

Yin Cui 187 Oct 01, 2022