SNV calling pipeline developed explicitly to process individual or trio vcf files obtained from Illumina based pipeline (grch37/grch38).

Overview

SNV Pipeline

SNV calling pipeline developed explicitly to process individual or trio vcf files obtained from Illumina based pipeline (grch37/grch38). The pipeline requires user defined datasets & annotation sources, available tools and input set of vcf files. It generates analysis scripts that can be incorporated into high performance cluster (HPC) computing to process the samples. This results in list of filtered variants per family that can be used for interpreation, reporting and further downstream analysis.

For demonstration purpose below example is presented for GRCh37. However, the same can be replicated for GRCh38.

Installation

git clone https://github.com/ajaarma/snv.git

Required Installation packages

Install anaconda v2.0
Follow this link for installation: https://docs.anaconda.com/anaconda/install/linux/
Conda environment commands
$ conda create --name snv
$ source activate snv
$ conda install python=2.7.16
$ pip install xmltodict
$ pip install dicttoxml

$ conda install -c bioconda gvcfgenotyper
$ conda install -c anaconda gawk	
$ conda install samtools=1.3
$ conda install vcftools=0.1.14
$ conda install bcftools=1.9
$ conda install gcc #(OSX)
$ conda install gcc_linux-64 #(Linux)
$ conda install parallel
$ conda install -c mvdbeek ucsc_tools
** conda-develop -n 
    
    
     /demo/softwares/vep/Plugins/

$ conda install -c r r-optparse
$ conda install -c r r-dplyr
$ conda install -c r r-plyr
$ conda install -c r r-data.table
$ conda install -c aakumar r-readbulk
$ conda install -c bioconda ensembl-vep=100.4
$ vep_install -a cf -s homo_sapiens -y GRCh37 -c 
     
      /demo/softwares/vep/grch37 --CONVERT
$ vep_install -a cf -s homo_sapiens -y GRCh38 -c 
      
       /demo/softwares/vep/grch38 --CONVERT

      
     
    
   

Data directory and datasets

Default datasets provided
1. exac_pli: demo/resources/gnomad/grch37/gnomad.v2.1.1.lof_metrics.by_transcript_forVEP.txt
2. ensembl: demo/resources/ensembl/grch37/ensBioMart_grch37_v98_ENST_lengths_191208.txt
3. region-exons: demo/resources/regions/grch37/hg19_refseq_ensembl_exons_50bp_allMT_hgmd_clinvar_20200519.txt
4. region-pseudo-autosomal: demo/resources/regions/grch37/hg19_non_pseudoautosomal_regions_X.txt
5. HPO: demo/resources/hpo/phenotype_to_genes.tar.gz
Other datasets that require no entry to user-configuration file
6. Curated: 
	6.1. Genelist: demo/resources/curated/NGC_genelist_allNamesOnly-20200519.txt
	6.2. Somatic mosaicism genes: demo/resources/curated/haem_somatic_mosaicism_genes_20191015.txt
	6.3. Imprinted gene list: demo/resources/curated/imprinted_genes_20200424.txt
	6.4. Polymorphic gene list: demo/resources/curated/polymorphic_genes_20200509.txt
7. OMIM: demo/resources/omim/omim_20200421_geneInfoBase.txt

Download link for following dataset and place them in corresponding directories as shown

' | awk -v OFS="\t" '{ if(/^#/){ print }else{ print $1,$2,$3,$4,$5,$6,$7,"ID="$3";"$8 } }' | bgzip -c > hgmd_pro_2019.4_hg19_wID.vcf.gz $ bcftools index -t hgmd_pro_2019.4_hg19_wID.vcf.gz $ bcftools index hgmd_pro_2019.4_hg19_wID.vcf.gz Put it in this directory: demo/resources/hgmd/grch37/hgmd_pro_2019.4_hg19_wID.vcf.gz Edit the user config flat file CONFIG/UserConfig.txt : hgmd=hgmd/grch37/hgmd_pro_2019.4_hg19_wID.vcf.gz 8. CLINVAR: Download link: https://ftp.ncbi.nlm.nih.gov/pub/clinvar/vcf_GRCh37/weekly/clinvar_20200506.vcf.gz https://ftp.ncbi.nlm.nih.gov/pub/clinvar/vcf_GRCh37/weekly/clinvar_20200506.vcf.gz.tbi Put it in this directory: demo/resources/clinvar/grch37/clinvar_20200506.vcf.gz Edit the user config flat file CONFIG/UserConfig.txt : clinvar=clinvar/grch37/clinvar_20200506.vcf.gz ">
1. HPO: Extract HPO phenotypes mapping:
	$ cd 
   
    /demo/resources/hpo/
	$ tar -zxvf phenotypes_to_genes.tar.gz 

2. REFERENCE SEQUENCE GENOME (FASTA file alongwith Index)
	Download link: https://drive.google.com/drive/folders/1Ro3pEYhVdYkMmteSr8YRPFeTvb_K0lVf?usp=sharing
	Download file: Homo_sapiens.GRCh37.74.dna.fasta
		Get the corresponding index and dict files: *.fai and *.dict
	Put this in folder: demo/resources/genomes/grch37/Homo_sapiens.GRCh37.74.dna.fasta

3. GNOMAD
	Download link (use wget): 
	Genomes: https://storage.googleapis.com/gnomad-public/release/2.1.1/vcf/genomes/gnomad.genomes.r2.1.1.sites.vcf.bgz
	Exomes: https://storage.googleapis.com/gnomad-public/release/2.1.1/vcf/exomes/gnomad.exomes.r2.1.1.sites.vcf.bgz
	Put it in this folder: 
		demo/resources/gnomad/grch37/gnomad.genomes.r2.1.1.sites.vcf.bgz
		demo/resources/gnomad/grch37/gnomad.exomes.r2.1.1.sites.vcf.bgz
	Edit User config flat file CONFIG/UserConfig.txt : 
		gnomad_g=gnomad/grch37/gnomad.genomes.r2.1.1.sites.vcf.bgz
		gnomad_e=gnomad/grch37/gnomad.exomes.r2.1.1.sites.vcf.bgz

4. ExAC:
	Download Link: https://drive.google.com/drive/folders/11Ya8XfAxOYmlKZ9mN8A16IDTLHdHba_0?usp=sharing
	Download file: ExAC.r0.3.1.sites.vep.decompose.norm.prefixed_PASS-only.vcf.gz
		also the index files (*.csi and *.tbi)
	Put it in this folder as: 
		demo/resources/exac/grch37/ExAC.r0.3.1.sites.vep.decompose.norm.prefixed_PASS-only.vcf.gz
	Edit User config flat file CONFIG/UserConfig.txt : 
		exac=exac/grch37/ExAC.r0.3.1.sites.vep.decompose.norm.prefixed_PASS-only.vcf.gz
		exac_t=exac/grch37/ExAC.r0.3.1.sites.vep.decompose.norm.prefixed_PASS-only.vcf.gz

5. CADD:
	Download link (use wget):
		https://krishna.gs.washington.edu/download/CADD/v1.6/GRCh37/whole_genome_SNVs.tsv.gz
		https://krishna.gs.washington.edu/download/CADD/v1.6/GRCh37/InDels.tsv.gz
		(Also download the corresponding tabix index files as well)
	Put it in this directory: 
		demo/resources/cadd/grch37/whole_genome_SNVs.tsv.gz
		demo/resource/cadd/grch37/InDels.tsv.gz
	Edit the user config flat file CONFIG/UserConfig.txt :
		cadd_snv=cadd/grch37/whole_genome_SNVs.tsv.gz
		cadd_indel=cadd/grch37/InDels.tsv.gz

6. REVEL:
	Download link: https://drive.google.com/drive/folders/12Tl1YU5bI-By_VawTPVWHef7AXzn4LuP?usp=sharing
	Download file: new_tabbed_revel.tsv.gz
	         Also the index file: *.tbi
	Put it in this directory: demo/resources/revel/grch37/new_tabbed_revel.tsv.gz
	Edit the user config flat file CONFIG/UserConfig.txt : 
		revel=revel/grch37/new_tabbed_revel.tsv.gz

7. HGMD:
	Download link: http://www.hgmd.cf.ac.uk/ac/index.php (Require personal access login)
	Put it in this directory: demo/resources/hgmd/grch37/hgmd_pro_2019.4_hg19.vcf

	Use this command to process HGMD file inside this directory:
		$ cat hgmd_pro_2019.4_hg19.vcf | sed '/##comment=.*\"/a  ##INFO=
    
     ' | awk -v OFS="\t" '{ if(/^#/){ print }else{ print $1,$2,$3,$4,$5,$6,$7,"ID="$3";"$8 } }' | bgzip -c  > hgmd_pro_2019.4_hg19_wID.vcf.gz
		$ bcftools index -t hgmd_pro_2019.4_hg19_wID.vcf.gz
		$ bcftools index hgmd_pro_2019.4_hg19_wID.vcf.gz	

	Put it in this directory: demo/resources/hgmd/grch37/hgmd_pro_2019.4_hg19_wID.vcf.gz
	Edit the user config flat file CONFIG/UserConfig.txt :
		hgmd=hgmd/grch37/hgmd_pro_2019.4_hg19_wID.vcf.gz

8. CLINVAR:
	Download link: 
		https://ftp.ncbi.nlm.nih.gov/pub/clinvar/vcf_GRCh37/weekly/clinvar_20200506.vcf.gz
		https://ftp.ncbi.nlm.nih.gov/pub/clinvar/vcf_GRCh37/weekly/clinvar_20200506.vcf.gz.tbi
	Put it in this directory: demo/resources/clinvar/grch37/clinvar_20200506.vcf.gz
	Edit the user config flat file CONFIG/UserConfig.txt :
		clinvar=clinvar/grch37/clinvar_20200506.vcf.gz

    
   
Customized Curated Annotation sets
Default present with this distribution. Can be found in XML file with these tags:
	(1) GeneList: 
   
    
	(2) Somatic mosaicism genes: 
    
     
	(3) Imprinted genes: 
     
      
	(4) Polymorphic genes: 
      
       
	(5) HPO terms: 
       
         (6) OMIM: 
         
        
       
      
     
    
   

Activate the conda environment

$ source activate snv

Step - 1:

1. Edit CONFIG/UserConfig.txt: 
	(a) Add the absolute path prefix for the resources directory with tag: resourceDir. 
	    An example can be seen in CONFIG/Example-UserConfig.txt file.
	(b) Manually check if datasets corresponding to other field tags are correctly downloaded and 
	    put in respective folders.
2. Create user defined XML file from input User Configuration flat file and Base-XML file
Command:
$ python createAnalysisXML.py -u 
   
     
		    	      -b 
    
      
		              -o 
     

     
    
   
Example:
$ python createAnalysisXML.py -u CONFIG/UserConfig.txt 
		       	      -b CONFIG/Analysis_base_grch37.xml 
		              -o CONFIG/Analysis_user_grch37.xml
Outputs:
CONFIG/Analysis_user_grch37.xml

Step-2:

1. Put the respective vcf files in the directory. For example: demo/example/vcf/ 
2. Create manifest file in same format as shown in demo/example/example_manifest.txt
3. Assign gender to each family members (illumina or sample id). For example: demo/example/example_genders.txt
4. List of all the family ids that needed to be analyzed.
         For e.g: demo/example/manifest/example_family_analysis.txt

Step -3:

Generate all the shell scripts that can be incorporated into user specific HPC cluster network. For e.g: Slurm/PBS/LSF network.

Command:
$ python processSNV.py 	-a 
   
    
	    		-p 
    
     
	      		-m 
     
      
	     		-e 
      
       
			-w 
       
         -g 
        
          -d 
         
           -f 
          
            -s 
           
             -r 
             
            
           
          
         
        
       
      
     
    
   
Example:
$ python processSNV.py 	-a CONFIG/Analysis_user_grch37.xml \ 
			-p 20210326 \
			-m 
   
    /demo/example/example_manifest.txt \
			-e gvcfGT \
			-w 
    
     /demo/example/ \
			-g 
     
      /demo/example/example_genders.txt \
			-d 
      
       /demo/example/exeter_samples_norm.fof \
			-f 
       
        /demo/example/manifest/example_family_analysis.txt \ -s 
        
         /demo/example/manifest/example_family.fof \ -r 
         
          /demo/example/manifest/example_family_header.txt (optional) 
         
        
       
      
     
    
   
Outputs:
Two scripts in the directory: 
   
    /demo/example/20210326/tmp_binaries/
Launch the scripts in these 2 stages sequentially after each of them gets finished.

   (1) genotypeAndAnnotate_chr%.sh where %=1..22,X,Y and MT
	scatter the annotation and frequency filtering per chromosome for all families.
   (2) mergeAndFilter.sh:
	Merge all the chromosome and apply inheritance filtering.

   

Step-4

Final output of list of filtered variant is present in:

   
    /demo/example/20210326/fam_filter/
    
     /
     
      .filt_
      
       .txt

      
     
    
   
For any questions/issues/bugs please mail us at:
Owner
East Genomics
Bringing together genomic medicine across the East Midlands and East of England
East Genomics
Randomisation-based inference in Python based on data resampling and permutation.

Randomisation-based inference in Python based on data resampling and permutation.

67 Dec 27, 2022
A lightweight, hub-and-spoke dashboard for multi-account Data Science projects

A lightweight, hub-and-spoke dashboard for cross-account Data Science Projects Introduction Modern Data Science environments often involve many indepe

AWS Samples 3 Oct 30, 2021
Flexible HDF5 saving/loading and other data science tools from the University of Chicago

deepdish Flexible HDF5 saving/loading and other data science tools from the University of Chicago. This repository also host a Deep Learning blog: htt

UChicago - Department of Computer Science 255 Dec 10, 2022
This is an analysis and prediction project for house prices in King County, USA based on certain features of the house

This is a project for analysis and estimation of House Prices in King County USA The .csv file contains the data of the house and the .ipynb file con

Amit Prakash 1 Jan 21, 2022
CS50 pset9: Using flask API to create a web application to exchange stocks' shares.

C$50 Finance In this guide we want to implement a website via which users can “register”, “login” “buy” and “sell” stocks, like below: Background If y

1 Jan 24, 2022
Basis Set Format Converter

Basis Set Format Converter Repository for the online tool that allows you to enter a basis set in the form of text input for a variety of Quantum Chem

Manas Sharma 3 Jun 27, 2022
PyChemia, Python Framework for Materials Discovery and Design

PyChemia, Python Framework for Materials Discovery and Design PyChemia is an open-source Python Library for materials structural search. The purpose o

Materials Discovery Group 61 Oct 02, 2022
Mortgage-loan-prediction - Show how to perform advanced Analytics and Machine Learning in Python using a full complement of PyData utilities

Mortgage-loan-prediction - Show how to perform advanced Analytics and Machine Learning in Python using a full complement of PyData utilities. This is aimed at those looking to get into the field of D

Joachim 1 Dec 26, 2021
Yet Another Workflow Parser for SecurityHub

YAWPS Yet Another Workflow Parser for SecurityHub "Screaming pepper" by Rum Bucolic Ape is licensed with CC BY-ND 2.0. To view a copy of this license,

myoung34 8 Dec 22, 2022
Analysis of a dataset of 10000 passwords to find common trends and mistakes people generally make while setting up a password.

Analysis of a dataset of 10000 passwords to find common trends and mistakes people generally make while setting up a password.

Aryan Raj 7 Sep 04, 2022
Intercepting proxy + analysis toolkit for Second Life compatible virtual worlds

Hippolyzer Hippolyzer is a revival of Linden Lab's PyOGP library targeting modern Python 3, with a focus on debugging issues in Second Life-compatible

Salad Dais 6 Sep 01, 2022
OpenDrift is a software for modeling the trajectories and fate of objects or substances drifting in the ocean, or even in the atmosphere.

opendrift OpenDrift is a software for modeling the trajectories and fate of objects or substances drifting in the ocean, or even in the atmosphere. Do

OpenDrift 167 Dec 13, 2022
Validated, scalable, community developed variant calling, RNA-seq and small RNA analysis

Validated, scalable, community developed variant calling, RNA-seq and small RNA analysis. You write a high level configuration file specifying your in

Blue Collar Bioinformatics 917 Jan 03, 2023
Statsmodels: statistical modeling and econometrics in Python

About statsmodels statsmodels is a Python package that provides a complement to scipy for statistical computations including descriptive statistics an

statsmodels 8k Dec 29, 2022
pyhsmm MITpyhsmm - Bayesian inference in HSMMs and HMMs. MIT

Bayesian inference in HSMMs and HMMs This is a Python library for approximate unsupervised inference in Bayesian Hidden Markov Models (HMMs) and expli

Matthew Johnson 527 Dec 04, 2022
A set of functions and analysis classes for solvation structure analysis

SolvationAnalysis The macroscopic behavior of a liquid is determined by its microscopic structure. For ionic systems, like batteries and many enzymes,

MDAnalysis 19 Nov 24, 2022
NumPy and Pandas interface to Big Data

Blaze translates a subset of modified NumPy and Pandas-like syntax to databases and other computing systems. Blaze allows Python users a familiar inte

Blaze 3.1k Jan 05, 2023
WAL enables programmable waveform analysis.

This repro introcudes the Waveform Analysis Language (WAL). The initial paper on WAL will appear at ASPDAC'22 and can be downloaded here: https://www.

Institute for Complex Systems (ICS), Johannes Kepler University Linz 40 Dec 13, 2022
Python library for creating data pipelines with chain functional programming

PyFunctional Features PyFunctional makes creating data pipelines easy by using chained functional operators. Here are a few examples of what it can do

Pedro Rodriguez 2.1k Jan 05, 2023
Lale is a Python library for semi-automated data science.

Lale is a Python library for semi-automated data science. Lale makes it easy to automatically select algorithms and tune hyperparameters of pipelines that are compatible with scikit-learn, in a type-

International Business Machines 293 Dec 29, 2022