Exploratory Data Analysis for Employee Retention Dataset

Overview

Exploratory Data Analysis for Employee Retention Dataset

  • Employee turn-over is a very costly problem for companies.
  • The cost of replacing an employee if often larger than 100K USD, taking into account the time spent to interview and find a replacement, placement fees, sign-on bonuses and the loss of productivity for several months.
  • It is only natural then that data science has started being applied to this area.
  • Understanding why and when employees are most likely to leave can lead to actions to improve employee retention as well as planning new hiring in advance. This application of DS is sometimes called people analytics or people data science
  • We got employee data from a few companies. We have data about all employees who joined from 2011/01/24 to 2015/12/13. For each employee, we also know if they are still at the company as of 2015/12/13 or they have quit.
  • Beside that, we have general info about the employee, such as avg salary during her tenure, dept, and yrs of experience.

Goal:

In this challenge, you have a data set with info about the employees and have to predict when employees are going to quit by understanding the main drivers of employee churn.

  • Assume, for each company, that the headcount starts from zero on 2011/01/23. Estimate employee headcount, for each company, on each day, from 2011/01/24 to 2015/12/13. That is, if by 2012/03/02 2000 people have joined company 1 and 1000 of them have already quit, then company headcount on 2012/03/02 for company 1 would be 1000.
  • You should create a table with 3 columns: day, employee_headcount, company_id. What are the main factors that drive employee churn? Do they make sense? Explain your findings.
  • If you could add to this data set just one variable that could help explain employee churn, what would that be?

Data: (data/employee_retention_data.csv)

Columns:

  • employee_id : id of the employee. Unique by employee per company
  • company_id : company id.
  • dept : employee dept
  • seniority : number of yrs of work experience when hired
  • salary: avg yearly salary of the employee during her tenure within the company
  • join_date: when the employee joined the company, it can only be between 2011/01/24 and 2015/12/13
  • quit_date: when the employee left her job (if she is still employed as of 2015/12/13, this field is NA)

Question 1

Function that returns a list of the names of categorical variables

  • Define a function with name get_categorical_variables
  • Pass dataframe as parameter (Read csv file and convert it into pandas dataframe)
  • Return list of all categorical fields available.

Question 2

Function that returns the list of the names of numeric variables

  • Define a function with name get_numerical_variables
  • Pass dataframe as parameter (Read csv file and convert it into pandas dataframe)
  • Return list of all numerical fields available.

Question 3

Function that returns, for numeric variables, mean, median, 25, 50, 75th percentile

  • Define a function with name get_numerical_variables_percentile
  • Pass dataframe as parameter (Read csv file and convert it into pandas dataframe)
  • Return dataframe with following columns:
    • variable name
    • mean
    • median
    • 25th percentile
    • 50th percentile
    • 75th percentile

Question 4

For categorical variables, get modes

  • Define a function with name get_categorical_variables_modes
  • Pass dataframe as parameter (Read csv file and convert it into pandas dataframe)
  • Return dict object with following keys:
    • converted
    • country
    • new_user
    • source

Question 5

For each column, list the count of missing values

  • Define a function with name get_missing_values_count
  • Pass dataframe as parameter (Read csv file and convert it into pandas dataframe)
  • Return dataframe with following columns:
    • var_name
    • missing_value_count

Question 6

Plot histograms using different subplots of all the numerical values in a single plot

  • Define a function with name plot_histogram_with_numerical_values
  • Pass dataframe and list of columns you want to plot as parameter
  • Plot the graph
  • Add column names as plot names (In case you dont understand this please connect with instructor)
  • Change the histogram colour to yellow
  • Fit a normal curve on those histograms (In case you dont understand this please connect with instructor)
Owner
kana sudheer reddy
curently studying in presidency university banglore
kana sudheer reddy
Feature engineering and machine learning: together at last

Feature engineering and machine learning: together at last! Lambdo is a workflow engine which significantly simplifies data analysis by unifying featu

Alexandr Savinov 14 Sep 15, 2022
nrgpy is the Python package for processing NRG Data Files

nrgpy nrgpy is the Python package for processing NRG Data Files Website and source: https://github.com/nrgpy/nrgpy Documentation: https://nrgpy.github

NRG Tech Services 23 Dec 08, 2022
API>local_db>AWS_RDS - Disclaimer! All data used is for educational purposes only.

APIlocal_dbAWS_RDS Disclaimer! All data used is for educational purposes only. ETL pipeline diagram. Aim of project By creating a fully working pipe

0 Apr 25, 2022
A Python package for Bayesian forecasting with object-oriented design and probabilistic models under the hood.

Disclaimer This project is stable and being incubated for long-term support. It may contain new experimental code, for which APIs are subject to chang

Uber Open Source 1.6k Dec 29, 2022
Conduits - A Declarative Pipelining Tool For Pandas

Conduits - A Declarative Pipelining Tool For Pandas Traditional tools for declaring pipelines in Python suck. They are mostly imperative, and can some

Kale Miller 7 Nov 21, 2021
Created covid data pipeline using PySpark and MySQL that collected data stream from API and do some processing and store it into MYSQL database.

Created covid data pipeline using PySpark and MySQL that collected data stream from API and do some processing and store it into MYSQL database.

2 Nov 20, 2021
Data analysis and visualisation projects from a range of individual projects and applications

Python-Data-Analysis-and-Visualisation-Projects Data analysis and visualisation projects from a range of individual projects and applications. Python

Tom Ritman-Meer 1 Jan 25, 2022
Toolchest provides APIs for scientific and bioinformatic data analysis.

Toolchest Python Client Toolchest provides APIs for scientific and bioinformatic data analysis. It allows you to abstract away the costliness of runni

Toolchest 11 Jun 30, 2022
ETL flow framework based on Yaml configs in Python

ETL framework based on Yaml configs in Python A light framework for creating data streams. Setting up streams through configuration in the Yaml file.

Павел Максимов 18 Jul 06, 2022
PipeChain is a utility library for creating functional pipelines.

PipeChain Motivation PipeChain is a utility library for creating functional pipelines. Let's start with a motivating example. We have a list of Austra

Michael Milton 2 Aug 07, 2022
Codes for the collection and predictive processing of bitcoin from the API of coinmarketcap

Codes for the collection and predictive processing of bitcoin from the API of coinmarketcap

Teo Calvo 5 Apr 26, 2022
The OHSDI OMOP Common Data Model allows for the systematic analysis of healthcare observational databases.

The OHSDI OMOP Common Data Model allows for the systematic analysis of healthcare observational databases.

Bell Eapen 14 Jan 02, 2023
Python beta calculator that retrieves stock and market data and provides linear regressions.

Stock and Index Beta Calculator Python script that calculates the beta (β) of a stock against the chosen index. The script retrieves the data and resa

sammuhrai 4 Jul 29, 2022
Maximum Covariance Analysis in Python

xMCA | Maximum Covariance Analysis in Python The aim of this package is to provide a flexible tool for the climate science community to perform Maximu

Niclas Rieger 39 Jan 03, 2023
Handle, manipulate, and convert data with units in Python

unyt A package for handling numpy arrays with units. Often writing code that deals with data that has units can be confusing. A function might return

The yt project 304 Jan 02, 2023
Analysis of a dataset of 10000 passwords to find common trends and mistakes people generally make while setting up a password.

Analysis of a dataset of 10000 passwords to find common trends and mistakes people generally make while setting up a password.

Aryan Raj 7 Sep 04, 2022
.npy, .npz, .mtx converter.

npy-converter Matrix Data Converter. Expand matrix for multi-thread, multi-process Divid matrix for multi-thread, multi-process Support: .mtx, .npy, .

taka 1 Feb 07, 2022
Yet Another Workflow Parser for SecurityHub

YAWPS Yet Another Workflow Parser for SecurityHub "Screaming pepper" by Rum Bucolic Ape is licensed with CC BY-ND 2.0. To view a copy of this license,

myoung34 8 Dec 22, 2022