scikit-multimodallearn is a Python package implementing algorithms multimodal data.

Overview
pipeline status coverage report

scikit-multimodallearn

scikit-multimodallearn is a Python package implementing algorithms multimodal data.

It is compatible with scikit-learn, a popular package for machine learning in Python.

Documentation

The documentation including installation instructions, API documentation and examples is available online.

Installation

Dependencies

scikit-multimodallearn works with Python 3.5 or later.

scikit-multimodallearn depends on scikit-learn (version >= 0.19).

Optionally, matplotlib is required to run the examples.

Installation using pip

scikit-multimodallearn is available on PyPI and can be installed using pip:

pip install scikit-multimodallearn

Development

The development of this package follows the guidelines provided by the scikit-learn community.

Refer to the Developer's Guide of the scikit-learn project for more details.

Source code

You can get the source code from the Git repository of the project:

git clone [email protected]:dev/multiconfusion.git

Testing

pytest and pytest-cov are required to run the test suite with:

cd multimodal
pytest

A code coverage report is displayed in the terminal when running the tests. An HTML version of the report is also stored in the directory htmlcov.

Generating the documentation

The generation of the documentation requires sphinx, sphinx-gallery, numpydoc and matplotlib and can be run with:

python setup.py build_sphinx

The resulting files are stored in the directory build/sphinx/html.

Credits

scikit-multimodallearn is developped by the development team of the LIS.

If you use scikit-multimodallearn in a scientific publication, please cite the following paper:

@InProceedings{Koco:2011:BAMCC,
 author={Ko\c{c}o, Sokol and Capponi, C{\'e}cile},
 editor={Gunopulos, Dimitrios and Hofmann, Thomas and Malerba, Donato
         and Vazirgiannis, Michalis},
 title={A Boosting Approach to Multiview Classification with Cooperation},
 booktitle={Proceedings of the 2011 European Conference on Machine Learning
            and Knowledge Discovery in Databases - Volume Part II},
 year={2011},
 location={Athens, Greece},
 publisher={Springer-Verlag},
 address={Berlin, Heidelberg},
 pages={209--228},
 numpages = {20},
 isbn={978-3-642-23783-6}
 url={https://link.springer.com/chapter/10.1007/978-3-642-23783-6_14},
 keywords={boosting, classification, multiview learning,
           supervised learning},
}

@InProceedings{Huu:2019:BAMCC,
 author={Huusari, Riika, Kadri Hachem and Capponi, C{\'e}cile},
 editor={},
 title={Multi-view Metric Learning in Vector-valued Kernel Spaces},
 booktitle={arXiv:1803.07821v1},
 year={2018},
 location={Athens, Greece},
 publisher={},
 address={},
 pages={209--228},
 numpages = {12}
 isbn={978-3-642-23783-6}
 url={https://link.springer.com/chapter/10.1007/978-3-642-23783-6_14},
 keywords={boosting, classification, multiview learning,
           merric learning, vector-valued, kernel spaces},
}

References

  • Sokol Koço, Cécile Capponi, "Learning from Imbalanced Datasets with cross-view cooperation" Linking and mining heterogeneous an multi-view data, Unsupervised and semi-supervised learning Series Editor M. Emre Celeri, pp 161-182, Springer
  • Sokol Koço, Cécile Capponi, "A boosting approach to multiview classification with cooperation", Proceedings of the 2011 European Conference on Machine Learning (ECML), Athens, Greece, pp.209-228, 2011, Springer-Verlag.
  • Sokol Koço, "Tackling the uneven views problem with cooperation based ensemble learning methods", PhD Thesis, Aix-Marseille Université, 2013.
  • Riikka Huusari, Hachem Kadri and Cécile Capponi, "Multi-View Metric Learning in Vector-Valued Kernel Spaces" in International Conference on Artificial Intelligence and Statistics (AISTATS) 2018

Copyright

Université d'Aix Marseille (AMU) - Centre National de la Recherche Scientifique (CNRS) - Université de Toulon (UTLN).

Copyright © 2017-2018 AMU, CNRS, UTLN

License

scikit-multimodallearn is free software: you can redistribute it and/or modify it under the terms of the New BSD License

CyLP is a Python interface to COIN-OR’s Linear and mixed-integer program solvers (CLP, CBC, and CGL)

CyLP CyLP is a Python interface to COIN-OR’s Linear and mixed-integer program solvers (CLP, CBC, and CGL). CyLP’s unique feature is that you can use i

COIN-OR Foundation 161 Dec 14, 2022
Book Recommender System Using Sci-kit learn N-neighbours

Model-Based-Recommender-Engine I created a book Recommender System using Sci-kit learn's N-neighbours algorithm for my model and the streamlit library

1 Jan 13, 2022
This is the material used in my free Persian course: Machine Learning with Python

This is the material used in my free Persian course: Machine Learning with Python

Yara Mohamadi 4 Aug 07, 2022
QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

152 Jan 02, 2023
A comprehensive set of fairness metrics for datasets and machine learning models, explanations for these metrics, and algorithms to mitigate bias in datasets and models.

AI Fairness 360 (AIF360) The AI Fairness 360 toolkit is an extensible open-source library containg techniques developed by the research community to h

1.9k Jan 06, 2023
Microsoft Machine Learning for Apache Spark

Microsoft Machine Learning for Apache Spark MMLSpark is an ecosystem of tools aimed towards expanding the distributed computing framework Apache Spark

Microsoft Azure 3.9k Dec 30, 2022
This is a Cricket Score Predictor that predicts the first innings score of a T20 Cricket match using Machine Learning

This is a Cricket Score Predictor that predicts the first innings score of a T20 Cricket match using Machine Learning. It is a Web Application.

Developer Junaid 3 Aug 04, 2022
Implementation of deep learning models for time series in PyTorch.

List of Implementations: Currently, the reimplementation of the DeepAR paper(DeepAR: Probabilistic Forecasting with Autoregressive Recurrent Networks

Yunkai Zhang 275 Dec 28, 2022
Adversarial Framework for (non-) Parametric Image Stylisation Mosaics

Fully Adversarial Mosaics (FAMOS) Pytorch implementation of the paper "Copy the Old or Paint Anew? An Adversarial Framework for (non-) Parametric Imag

Zalando Research 120 Dec 24, 2022
A library of extension and helper modules for Python's data analysis and machine learning libraries.

Mlxtend (machine learning extensions) is a Python library of useful tools for the day-to-day data science tasks. Sebastian Raschka 2014-2021 Links Doc

Sebastian Raschka 4.2k Dec 29, 2022
Graphsignal is a machine learning model monitoring platform.

Graphsignal is a machine learning model monitoring platform. It helps ML engineers, MLOps teams and data scientists to quickly address issues with data and models as well as proactively analyze model

Graphsignal 143 Dec 05, 2022
Implementation of different ML Algorithms from scratch, written in Python 3.x

Implementation of different ML Algorithms from scratch, written in Python 3.x

Gautam J 393 Nov 29, 2022
jaxfg - Factor graph-based nonlinear optimization library for JAX.

Factor graphs + nonlinear optimization in JAX

Brent Yi 134 Dec 21, 2022
Bayesian Modeling and Computation in Python

Bayesian Modeling and Computation in Python Open access and Code This repository contains the open access version of the text and the code examples in

Bayesian Modeling and Computation in Python 339 Jan 02, 2023
Credit Card Fraud Detection, used the credit card fraud dataset from Kaggle

Credit Card Fraud Detection, used the credit card fraud dataset from Kaggle

Sean Zahller 1 Feb 04, 2022
An open source framework that provides a simple, universal API for building distributed applications. Ray is packaged with RLlib, a scalable reinforcement learning library, and Tune, a scalable hyperparameter tuning library.

Ray provides a simple, universal API for building distributed applications. Ray is packaged with the following libraries for accelerating machine lear

23.3k Dec 31, 2022
Simulate & classify transient absorption spectroscopy (TAS) spectral features for bulk semiconducting materials (Post-DFT)

PyTASER PyTASER is a Python (3.9+) library and set of command-line tools for classifying spectral features in bulk materials, post-DFT. The goal of th

Materials Design Group 4 Dec 27, 2022
Machine Learning approach for quantifying detector distortion fields

DistortionML Machine Learning approach for quantifying detector distortion fields. This project is a feasibility study for training a surrogate model

Joel Bernier 1 Nov 05, 2021
Tools for diffing and merging of Jupyter notebooks.

nbdime provides tools for diffing and merging of Jupyter Notebooks.

Project Jupyter 2.3k Jan 03, 2023
Automatically build ARIMA, SARIMAX, VAR, FB Prophet and XGBoost Models on Time Series data sets with a Single Line of Code. Now updated with Dask to handle millions of rows.

Auto_TS: Auto_TimeSeries Automatically build multiple Time Series models using a Single Line of Code. Now updated with Dask. Auto_timeseries is a comp

AutoViz and Auto_ViML 519 Jan 03, 2023