scikit-multimodallearn is a Python package implementing algorithms multimodal data.

Overview
pipeline status coverage report

scikit-multimodallearn

scikit-multimodallearn is a Python package implementing algorithms multimodal data.

It is compatible with scikit-learn, a popular package for machine learning in Python.

Documentation

The documentation including installation instructions, API documentation and examples is available online.

Installation

Dependencies

scikit-multimodallearn works with Python 3.5 or later.

scikit-multimodallearn depends on scikit-learn (version >= 0.19).

Optionally, matplotlib is required to run the examples.

Installation using pip

scikit-multimodallearn is available on PyPI and can be installed using pip:

pip install scikit-multimodallearn

Development

The development of this package follows the guidelines provided by the scikit-learn community.

Refer to the Developer's Guide of the scikit-learn project for more details.

Source code

You can get the source code from the Git repository of the project:

git clone [email protected]:dev/multiconfusion.git

Testing

pytest and pytest-cov are required to run the test suite with:

cd multimodal
pytest

A code coverage report is displayed in the terminal when running the tests. An HTML version of the report is also stored in the directory htmlcov.

Generating the documentation

The generation of the documentation requires sphinx, sphinx-gallery, numpydoc and matplotlib and can be run with:

python setup.py build_sphinx

The resulting files are stored in the directory build/sphinx/html.

Credits

scikit-multimodallearn is developped by the development team of the LIS.

If you use scikit-multimodallearn in a scientific publication, please cite the following paper:

@InProceedings{Koco:2011:BAMCC,
 author={Ko\c{c}o, Sokol and Capponi, C{\'e}cile},
 editor={Gunopulos, Dimitrios and Hofmann, Thomas and Malerba, Donato
         and Vazirgiannis, Michalis},
 title={A Boosting Approach to Multiview Classification with Cooperation},
 booktitle={Proceedings of the 2011 European Conference on Machine Learning
            and Knowledge Discovery in Databases - Volume Part II},
 year={2011},
 location={Athens, Greece},
 publisher={Springer-Verlag},
 address={Berlin, Heidelberg},
 pages={209--228},
 numpages = {20},
 isbn={978-3-642-23783-6}
 url={https://link.springer.com/chapter/10.1007/978-3-642-23783-6_14},
 keywords={boosting, classification, multiview learning,
           supervised learning},
}

@InProceedings{Huu:2019:BAMCC,
 author={Huusari, Riika, Kadri Hachem and Capponi, C{\'e}cile},
 editor={},
 title={Multi-view Metric Learning in Vector-valued Kernel Spaces},
 booktitle={arXiv:1803.07821v1},
 year={2018},
 location={Athens, Greece},
 publisher={},
 address={},
 pages={209--228},
 numpages = {12}
 isbn={978-3-642-23783-6}
 url={https://link.springer.com/chapter/10.1007/978-3-642-23783-6_14},
 keywords={boosting, classification, multiview learning,
           merric learning, vector-valued, kernel spaces},
}

References

  • Sokol Koço, Cécile Capponi, "Learning from Imbalanced Datasets with cross-view cooperation" Linking and mining heterogeneous an multi-view data, Unsupervised and semi-supervised learning Series Editor M. Emre Celeri, pp 161-182, Springer
  • Sokol Koço, Cécile Capponi, "A boosting approach to multiview classification with cooperation", Proceedings of the 2011 European Conference on Machine Learning (ECML), Athens, Greece, pp.209-228, 2011, Springer-Verlag.
  • Sokol Koço, "Tackling the uneven views problem with cooperation based ensemble learning methods", PhD Thesis, Aix-Marseille Université, 2013.
  • Riikka Huusari, Hachem Kadri and Cécile Capponi, "Multi-View Metric Learning in Vector-Valued Kernel Spaces" in International Conference on Artificial Intelligence and Statistics (AISTATS) 2018

Copyright

Université d'Aix Marseille (AMU) - Centre National de la Recherche Scientifique (CNRS) - Université de Toulon (UTLN).

Copyright © 2017-2018 AMU, CNRS, UTLN

License

scikit-multimodallearn is free software: you can redistribute it and/or modify it under the terms of the New BSD License

Covid-polygraph - a set of Machine Learning-driven fact-checking tools

Covid-polygraph, a set of Machine Learning-driven fact-checking tools that aim to address the issue of misleading information related to COVID-19.

1 Apr 22, 2022
Machine Learning Algorithms

Machine-Learning-Algorithms In this project, the dataset was created through a survey opened on Google forms. The purpose of the form is to find the p

Göktuğ Ayar 3 Aug 10, 2022
A naive Bayes model for cancer classification using a set of documents

Naivebayes text classifcation model for cancer and noncancer documents Author: Alex King Purpose Requirements/files included How to use 1. Purpose The

Alex W King 1 Nov 24, 2021
This repo implements a Topological SLAM: Deep Visual Odometry with Long Term Place Recognition (Loop Closure Detection)

This repo implements a topological SLAM system. Deep Visual Odometry (DF-VO) and Visual Place Recognition are combined to form the topological SLAM system.

Best of Australian Centre for Robotic Vision (ACRV) 32 Jun 23, 2022
easyNeuron is a simple way to create powerful machine learning models, analyze data and research cutting-edge AI.

easyNeuron is a simple way to create powerful machine learning models, analyze data and research cutting-edge AI.

Neuron AI 5 Jun 18, 2022
dirty_cat is a Python module for machine-learning on dirty categorical variables.

dirty_cat dirty_cat is a Python module for machine-learning on dirty categorical variables.

637 Dec 29, 2022
Machine-learning-dell - Repositório com as atividades desenvolvidas no curso de Machine Learning

📚 Descrição Neste curso da Dell aprofundamos nossos conhecimentos em Machine Learning. 🖥️ Aulas (Em curso) 1.1 - Python aplicado a Data Science 1.2

Claudia dos Anjos 1 Jan 05, 2022
A collection of video resources for machine learning

Machine Learning Videos This is a collection of recorded talks at machine learning conferences, workshops, seminars, summer schools, and miscellaneous

Dustin Tran 1.5k Dec 29, 2022
A library of sklearn compatible categorical variable encoders

Categorical Encoding Methods A set of scikit-learn-style transformers for encoding categorical variables into numeric by means of different techniques

2.1k Jan 07, 2023
distfit - Probability density fitting

Python package for probability density function fitting of univariate distributions of non-censored data

Erdogan Taskesen 187 Dec 30, 2022
🚪✊Knock Knock: Get notified when your training ends with only two additional lines of code

Knock Knock A small library to get a notification when your training is complete or when it crashes during the process with two additional lines of co

Hugging Face 2.5k Jan 07, 2023
A collection of machine learning examples and tutorials.

machine_learning_examples A collection of machine learning examples and tutorials.

LazyProgrammer.me 7.1k Jan 01, 2023
Predict the income for each percentile of the population (Python) - FRENCH

05.income-prediction Predict the income for each percentile of the population (Python) - FRENCH Effectuez une prédiction de revenus Prérequis Pour ce

1 Feb 13, 2022
Open source time series library for Python

PyFlux PyFlux is an open source time series library for Python. The library has a good array of modern time series models, as well as a flexible array

Ross Taylor 2k Jan 02, 2023
Client - 🔥 A tool for visualizing and tracking your machine learning experiments

Weights and Biases Use W&B to build better models faster. Track and visualize all the pieces of your machine learning pipeline, from datasets to produ

Weights & Biases 5.2k Jan 03, 2023
Titanic Traveller Survivability Prediction

The aim of the mini project is predict whether or not a passenger survived based on attributes such as their age, sex, passenger class, where they embarked and more.

John Phillip 0 Jan 20, 2022
Free MLOps course from DataTalks.Club

MLOps Zoomcamp Our MLOps Zoomcamp course Sign up here: https://airtable.com/shrCb8y6eTbPKwSTL (it's not automated, you will not receive an email immed

DataTalksClub 4.6k Dec 31, 2022
Can a machine learning project be implemented to estimate the salaries of baseball players whose salary information and career statistics for 1986 are shared?

END TO END MACHINE LEARNING PROJECT ON HITTERS DATASET Can a machine learning project be implemented to estimate the salaries of baseball players whos

Pinar Oner 7 Dec 18, 2021
A comprehensive set of fairness metrics for datasets and machine learning models, explanations for these metrics, and algorithms to mitigate bias in datasets and models.

AI Fairness 360 (AIF360) The AI Fairness 360 toolkit is an extensible open-source library containg techniques developed by the research community to h

1.9k Jan 06, 2023
A classification model capable of accurately predicting the price of secondhand cars

The purpose of this project is create a classification model capable of accurately predicting the price of secondhand cars. The data used for model building is open source and has been added to this

Akarsh Singh 2 Sep 13, 2022