Graphsignal is a machine learning model monitoring platform.

Overview

Graphsignal Logger

License Version Downloads SaaS Status

Overview

Graphsignal is a machine learning model monitoring platform. It helps ML engineers, MLOps teams and data scientists to quickly address issues with data and models as well as proactively analyze model performance and availability. Learn more at graphsignal.com.

Model Dashboard

Model Monitoring

  • Data monitoring. Monitor offline and online predictions for data validity and anomalies, data drift, model drift, exceptions, and more.
  • Automatic issue detection. Graphsignal automatically detects and notifies on issues with data and models, no need to manually setup and maintain complex rules.
  • Model framework and deployment agnostic. Monitor models serving online, in streaming apps, accessed via APIs or offline, running batch predictions.
  • Any scale and data size. Graphsignal logger only sends data statistics allowing it to scale with your application and data.
  • Data privacy. No raw data is sent to Graphsignal cloud, only data statistics and metadata.
  • Team access. Easily add team members to your account, as many as you need.

Documentation

See full documentation at graphsignal.com/docs.

Getting Started

1. Installation

Install the Python logger by running

pip install graphsignal

Or clone and install the GitHub repository.

git clone https://github.com/graphsignal/graphsignal.git
python setup.py install

Import the package in your application

import graphsignal

2. Configuration

Configure the logger by specifying your API key.

graphsignal.configure(api_key='my_api_key')

To get an API key, sign up for a free account at graphsignal.com. The key can then be found in your account's Settings / API Keys page.

3. Logging session

Get logging session for a deployed model identified by deployment name. Multiple sessions can be used in parallel in case of multi-model scrips or servers.

sess = graphsignal.session(deployment_name='model1_prod')

Set any model metadata, e.g. model version or model graph details.

sess.set_metadata('key1', 'val1')

4. Prediction Logging

Log single or batch model prediction/inference data. Pass prediction data according to supported data formats using list, dict, numpy.ndarray or pandas.DataFrame.

Computed data statistics are uploaded at certain intervals and on process exit.

sess.log_prediction(input_data={'feat1': 1, 'feat2': 2.0, 'feat3': 'yes'}, output_data=[0.1])

Report prediction exceptions and errors.

sess.log_exception(message='wrong format', extra_info={'feature': 'F1'})

See prediction logging API reference for full documentation.

5. Dashboards and Alerting

After prediction logging is setup, sign in to Graphsignal to check out data dashboards and set up alerting for automatically detected issues.

Example

import numpy as np
from tensorflow import keras
import graphsignal

# Configure Graphsignal logger
graphsignal.configure(api_key='my_api_key')

# Get logging session for the model
sess = graphsignal.session(deployment_name='mnist_prod')


model = keras.models.load_model('mnist_model.h5')

(_, _), (x_test, _) = keras.datasets.mnist.load_data()
x_test = x_test.astype("float32") / 255
x_test = np.expand_dims(x_test, -1)

try:
  output = model.predict(x_test)

  # See supported data formats description at 
  # https://graphsignal.com/docs/python-logger/supported-data-formats
  sess.log_prediction(output_data=output)
except:
  sess.log_exception(exc_info=True)

See more examples.

Performance

Graphsignal logger uses streaming algorithms for computing data statistics to ensure production-level performance and memory usage. Data statistics are computed for time windows and sent to Graphsignal by the background thread.

Since only data statistics is sent to our servers, there is no limitation on logged data size.

Security and Privacy

Graphsignal logger can only open outbound connections to log-api.graphsignal.com and send data, no inbound connections or commands are possible.

No raw data is sent to Graphsignal cloud, only data statistics and metadata.

Troubleshooting

To enable debug logging, add debug_mode=True to configure(). If the debug log doesn't give you any hints on how to fix a problem, please report it to our support team via your account.

In case of connection issues, please make sure outgoing connections to https://log-api.graphsignal.com are allowed.

vortex particles for simulating smoke in 2d

vortex-particles-method-2d vortex particles for simulating smoke in 2d -vortexparticles_s

12 Aug 23, 2022
Project to deploy a machine learning model based on Titanic dataset from Kaggle

kaggle_titanic_deploy Project to deploy a machine learning model based on Titanic dataset from Kaggle In this project we used the Titanic dataset from

Vivian Yamassaki 8 May 23, 2022
Relevance Vector Machine implementation using the scikit-learn API.

scikit-rvm scikit-rvm is a Python module implementing the Relevance Vector Machine (RVM) machine learning technique using the scikit-learn API. Quicks

James Ritchie 204 Nov 18, 2022
A machine learning web application for binary classification using streamlit

Machine Learning web App This is a machine learning web application for binary classification using streamlit options this application contains 3 clas

abdelhak mokri 1 Dec 20, 2021
Classification based on Fuzzy Logic(C-Means).

CMeans_fuzzy Classification based on Fuzzy Logic(C-Means). Table of Contents About The Project Fuzzy CMeans Algorithm Built With Getting Started Insta

Armin Zolfaghari Daryani 3 Feb 08, 2022
Real-time domain adaptation for semantic segmentation

Advanced-Machine-Learning This repository contains the code for the project Real

Andrea Cavallo 1 Jan 30, 2022
Scikit learn library models to account for data and concept drift.

liquid_scikit_learn Scikit learn library models to account for data and concept drift. This python library focuses on solving data drift and concept d

7 Nov 18, 2021
Basic Docker Compose for Machine Learning Purposes

Docker-compose for Machine Learning How to use: cd docker-ml-jupyterlab

Chris Chen 1 Oct 29, 2021
A concept I came up which ditches the idea of "layers" in a neural network.

Dynet A concept I came up which ditches the idea of "layers" in a neural network. Install Copy Dynet.py to your project. Run the example Install matpl

Anik Patel 4 Dec 05, 2021
Machine Learning e Data Science com Python

Machine Learning e Data Science com Python Arquivos do curso de Data Science e Machine Learning com Python na Udemy, cliqe aqui para acessá-lo. O prin

Renan Barbosa 1 Jan 27, 2022
DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective.

DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective. 10x Larger Models 10x Faster Trainin

Microsoft 8.4k Dec 30, 2022
An open source framework that provides a simple, universal API for building distributed applications. Ray is packaged with RLlib, a scalable reinforcement learning library, and Tune, a scalable hyperparameter tuning library.

Ray provides a simple, universal API for building distributed applications. Ray is packaged with the following libraries for accelerating machine lear

23.3k Dec 31, 2022
Distributed Tensorflow, Keras and PyTorch on Apache Spark/Flink & Ray

A unified Data Analytics and AI platform for distributed TensorFlow, Keras and PyTorch on Apache Spark/Flink & Ray What is Analytics Zoo? Analytics Zo

2.5k Dec 28, 2022
🌲 Implementation of the Robust Random Cut Forest algorithm for anomaly detection on streams

🌲 Implementation of the Robust Random Cut Forest algorithm for anomaly detection on streams

Real-time water systems lab 416 Jan 06, 2023
A high-performance topological machine learning toolbox in Python

giotto-tda is a high-performance topological machine learning toolbox in Python built on top of scikit-learn and is distributed under the G

giotto.ai 632 Dec 29, 2022
QML: A Python Toolkit for Quantum Machine Learning

QML is a Python2/3-compatible toolkit for representation learning of properties of molecules and solids.

176 Dec 09, 2022
QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

152 Jan 02, 2023
100 Days of Machine and Deep Learning Code

💯 Days of Machine Learning and Deep Learning Code MACHINE LEARNING TOPICS COVERED - FROM SCRATCH Linear Regression Logistic Regression K Means Cluste

Tanishq Gautam 66 Nov 02, 2022
database for artificial intelligence/machine learning data

AIDB v0.0.1 database for artificial intelligence/machine learning data Overview aidb is a database designed for large dataset for machine learning pro

Aarush Gupta 1 Oct 24, 2021
Dieses Projekt ermöglicht es den Smartmeter der EVN (Netz Niederösterreich) über die Kundenschnittstelle auszulesen.

SmartMeterEVN Dieses Projekt ermöglicht es den Smartmeter der EVN (Netz Niederösterreich) über die Kundenschnittstelle auszulesen. Smart Meter werden

greenMike 43 Dec 04, 2022