QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

Overview

QuickAI logo

QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

Anouncement video https://www.youtube.com/watch?v=kK46sJphjIs

Motivation

When I started to get into more advanced Machine Learning, I started to see how these famous neural network architectures(such as EfficientNet), were doing amazing things. However, when I tried to implement these architectures to problems that I wanted to solve, I realized that it was not super easy to implement and quickly experiment with these architectures. That is where QuickAI came in. It allows for easy experimentation of many model architectures quickly.

Dependencies:

Tensorflow, PyTorch, Sklearn, Matplotlib, Numpy, and Hugging Face Transformers. You should install TensorFlow and PyTorch following the instructions from their respective websites.

Why you should use QuickAI

QuickAI can reduce what would take tens of lines of code into 1-2 lines. This makes fast experimentation very easy and clean. For example, if you wanted to train EfficientNet on your own dataset, you would have to manually write the data loading, preprocessing, model definition and training code, which would be many lines of code. Whereas, with QuickAI, all of these steps happens automatically with just 1-2 lines of code.

The following models are currently supported:

  1. Image Classification

    • EfficientNet B0-B7
    • VGG16
    • VGG19
    • DenseNet121
    • DenseNet169
    • DenseNet201
    • Inception ResNet V2
    • Inception V3
    • MobileNet
    • MobileNet V2
    • MobileNet V3 Small & Large
    • ResNet 101
    • ResNet 101 V2
    • ResNet 152
    • ResNet 152 V2
    • ResNet 50
    • ResNet 50 V2
    • Xception
  2. Natural Language Processing

    • GPT-NEO 125M(Generation, Inference)
    • GPT-NEO 350M(Generation, Inference)
    • GPT-NEO 1.3B(Generation, Inference)
    • GPT-NEO 2.7B(Generation, Inference)
    • Distill BERT Cased(Q&A, Inference and Fine Tuning)
    • Distill BERT Uncased(Named Entity Recognition, Inference)
    • Distil BART (Summarization, Inference)
    • Distill BERT Uncased(Sentiment Analysis & Text/Token Classification, Inference and Fine Tuning)

Installation

pip install quickAI

How to use

Please see the examples folder for details.

Comments
  • Memory error

    Memory error

    Is it possible to host the gpt neo models on a website and make some kind of API, the models are to large to run on my computer. Also It would be nice if to have a stop function so the model knows at what token to stop and be able to add examples of the query needed.

    enhancement 
    opened by TheProtaganist 5
  • Add link to a demo

    Add link to a demo

    Hi, I tried using the notebook in the example folder but it wasn't working (I think the files were not imported into Colab), so I created a demo which should work.

    opened by equiet 1
  • Better code for image_classification.py

    Better code for image_classification.py

    Main change: Used a dict instead of excessive elifs. Other smaller changes.

    Important: I do not have the resources to test the code, but technically, it's just a rewrite of the original, so it should work.

    opened by pinjuf 1
  • [Snyk] Security upgrade wheel from 0.30.0 to 0.38.0

    [Snyk] Security upgrade wheel from 0.30.0 to 0.38.0

    This PR was automatically created by Snyk using the credentials of a real user.


    Snyk has created this PR to fix one or more vulnerable packages in the `pip` dependencies of this project.

    Changes included in this PR

    • Changes to the following files to upgrade the vulnerable dependencies to a fixed version:
      • requirements.txt
    ⚠️ Warning
    torchvision 0.5.0 requires numpy, which is not installed.
    torchvision 0.5.0 requires pillow, which is not installed.
    sympy 1.5.1 requires mpmath, which is not installed.
    coremltools 6.0 requires numpy, which is not installed.
    coremltools 6.0 requires protobuf, which is not installed.
    
    

    Vulnerabilities that will be fixed

    By pinning:

    Severity | Priority Score (*) | Issue | Upgrade | Breaking Change | Exploit Maturity :-------------------------:|-------------------------|:-------------------------|:-------------------------|:-------------------------|:------------------------- medium severity | 551/1000
    Why? Recently disclosed, Has a fix available, CVSS 5.3 | Regular Expression Denial of Service (ReDoS)
    SNYK-PYTHON-WHEEL-3092128 | wheel:
    0.30.0 -> 0.38.0
    | No | No Known Exploit

    (*) Note that the real score may have changed since the PR was raised.

    Some vulnerabilities couldn't be fully fixed and so Snyk will still find them when the project is tested again. This may be because the vulnerability existed within more than one direct dependency, but not all of the affected dependencies could be upgraded.

    Check the changes in this PR to ensure they won't cause issues with your project.


    Note: You are seeing this because you or someone else with access to this repository has authorized Snyk to open fix PRs.

    For more information: 🧐 View latest project report

    πŸ›  Adjust project settings

    πŸ“š Read more about Snyk's upgrade and patch logic


    Learn how to fix vulnerabilities with free interactive lessons:

    πŸ¦‰ Regular Expression Denial of Service (ReDoS)

    opened by geekjr 0
  • [Snyk] Security upgrade ubuntu from 21.10 to jammy

    [Snyk] Security upgrade ubuntu from 21.10 to jammy

    This PR was automatically created by Snyk using the credentials of a real user.


    Keeping your Docker base image up-to-date means you’ll benefit from security fixes in the latest version of your chosen image.

    Changes included in this PR

    • Dockerfile

    We recommend upgrading to ubuntu:jammy, as this image has only 10 known vulnerabilities. To do this, merge this pull request, then verify your application still works as expected.

    Some of the most important vulnerabilities in your base image include:

    | Severity | Priority Score / 1000 | Issue | Exploit Maturity | | :------: | :-------------------- | :---- | :--------------- | | medium severity | 514 | Out-of-bounds Read
    SNYK-UBUNTU2110-E2FSPROGS-2770726 | No Known Exploit | | medium severity | 300 | NULL Pointer Dereference
    SNYK-UBUNTU2110-KRB5-1735754 | No Known Exploit | | medium severity | 300 | OS Command Injection
    SNYK-UBUNTU2110-OPENSSL-2933132 | No Known Exploit | | medium severity | 300 | Inadequate Encryption Strength
    SNYK-UBUNTU2110-OPENSSL-2941384 | No Known Exploit | | medium severity | 300 | Improper Verification of Cryptographic Signature
    SNYK-UBUNTU2110-PERL-1930909 | No Known Exploit |


    Note: You are seeing this because you or someone else with access to this repository has authorized Snyk to open fix PRs.

    For more information: 🧐 View latest project report

    πŸ›  Adjust project settings


    Learn how to fix vulnerabilities with free interactive lessons:

    πŸ¦‰ Learn about vulnerability in an interactive lesson of Snyk Learn.

    opened by geekjr 0
  • [Snyk] Security upgrade wheel from 0.30.0 to 0.38.0

    [Snyk] Security upgrade wheel from 0.30.0 to 0.38.0

    This PR was automatically created by Snyk using the credentials of a real user.


    Snyk has created this PR to fix one or more vulnerable packages in the `pip` dependencies of this project.

    Changes included in this PR

    • Changes to the following files to upgrade the vulnerable dependencies to a fixed version:
      • requirements.txt
    ⚠️ Warning
    torchvision 0.5.0 requires pillow, which is not installed.
    sympy 1.5.1 requires mpmath, which is not installed.
    coremltools 6.0 requires protobuf, which is not installed.
    
    

    Vulnerabilities that will be fixed

    By pinning:

    Severity | Priority Score (*) | Issue | Upgrade | Breaking Change | Exploit Maturity :-------------------------:|-------------------------|:-------------------------|:-------------------------|:-------------------------|:------------------------- medium severity | 551/1000
    Why? Recently disclosed, Has a fix available, CVSS 5.3 | Regular Expression Denial of Service (ReDoS)
    SNYK-PYTHON-WHEEL-3092128 | wheel:
    0.30.0 -> 0.38.0
    | No | No Known Exploit

    (*) Note that the real score may have changed since the PR was raised.

    Some vulnerabilities couldn't be fully fixed and so Snyk will still find them when the project is tested again. This may be because the vulnerability existed within more than one direct dependency, but not all of the affected dependencies could be upgraded.

    Check the changes in this PR to ensure they won't cause issues with your project.


    Note: You are seeing this because you or someone else with access to this repository has authorized Snyk to open fix PRs.

    For more information: 🧐 View latest project report

    πŸ›  Adjust project settings

    πŸ“š Read more about Snyk's upgrade and patch logic


    Learn how to fix vulnerabilities with free interactive lessons:

    πŸ¦‰ Regular Expression Denial of Service (ReDoS)

    opened by geekjr 0
  • [Snyk] Security upgrade protobuf from 3.20.1 to 3.20.2

    [Snyk] Security upgrade protobuf from 3.20.1 to 3.20.2

    Snyk has created this PR to fix one or more vulnerable packages in the `pip` dependencies of this project.

    Changes included in this PR

    • Changes to the following files to upgrade the vulnerable dependencies to a fixed version:
      • requirements.txt
    ⚠️ Warning
    torchvision 0.5.0 requires pillow, which is not installed.
    sympy 1.5.1 requires mpmath, which is not installed.
    coremltools 6.0 requires protobuf, which is not installed.
    
    

    Vulnerabilities that will be fixed

    By pinning:

    Severity | Priority Score (*) | Issue | Upgrade | Breaking Change | Exploit Maturity :-------------------------:|-------------------------|:-------------------------|:-------------------------|:-------------------------|:------------------------- medium severity | 571/1000
    Why? Recently disclosed, Has a fix available, CVSS 5.7 | Denial of Service (DoS)
    SNYK-PYTHON-PROTOBUF-3031740 | protobuf:
    3.20.1 -> 3.20.2
    | No | No Known Exploit

    (*) Note that the real score may have changed since the PR was raised.

    Some vulnerabilities couldn't be fully fixed and so Snyk will still find them when the project is tested again. This may be because the vulnerability existed within more than one direct dependency, but not all of the affected dependencies could be upgraded.

    Check the changes in this PR to ensure they won't cause issues with your project.


    Note: You are seeing this because you or someone else with access to this repository has authorized Snyk to open fix PRs.

    For more information: 🧐 View latest project report

    πŸ›  Adjust project settings

    πŸ“š Read more about Snyk's upgrade and patch logic


    Learn how to fix vulnerabilities with free interactive lessons:

    πŸ¦‰ Learn about vulnerability in an interactive lesson of Snyk Learn.

    opened by snyk-bot 0
  • [Snyk] Security upgrade ubuntu from rolling to 21.10

    [Snyk] Security upgrade ubuntu from rolling to 21.10

    Keeping your Docker base image up-to-date means you’ll benefit from security fixes in the latest version of your chosen image.

    Changes included in this PR

    • Dockerfile

    We recommend upgrading to ubuntu:21.10, as this image has only 12 known vulnerabilities. To do this, merge this pull request, then verify your application still works as expected.

    Some of the most important vulnerabilities in your base image include:

    | Severity | Issue | Exploit Maturity | | :------: | :---- | :--------------- | | medium severity | Improper Verification of Cryptographic Signature
    SNYK-UBUNTU2110-PERL-1930909 | No Known Exploit | | low severity | Time-of-check Time-of-use (TOCTOU)
    SNYK-UBUNTU2110-SHADOW-1758374 | No Known Exploit | | low severity | Time-of-check Time-of-use (TOCTOU)
    SNYK-UBUNTU2110-SHADOW-1758374 | No Known Exploit | | low severity | NULL Pointer Dereference
    SNYK-UBUNTU2110-TAR-1744334 | No Known Exploit | | medium severity | CVE-2018-25032
    SNYK-UBUNTU2110-ZLIB-2433596 | No Known Exploit |


    Note: You are seeing this because you or someone else with access to this repository has authorized Snyk to open fix PRs.

    For more information: 🧐 View latest project report

    πŸ›  Adjust project settings


    Learn how to fix vulnerabilities with free interactive lessons:

    πŸ¦‰ Learn about vulnerability in an interactive lesson of Snyk Learn.

    opened by snyk-bot 0
  • [Snyk] Security upgrade ubuntu from 18.04 to rolling

    [Snyk] Security upgrade ubuntu from 18.04 to rolling

    Keeping your Docker base image up-to-date means you’ll benefit from security fixes in the latest version of your chosen image.

    Changes included in this PR

    • Dockerfile

    We recommend upgrading to ubuntu:rolling, as this image has only 13 known vulnerabilities. To do this, merge this pull request, then verify your application still works as expected.

    Some of the most important vulnerabilities in your base image include:

    | Severity | Priority Score / 1000 | Issue | Exploit Maturity | | :------: | :-------------------- | :---- | :--------------- | | medium severity | 300 | Information Exposure
    SNYK-UBUNTU1804-GCC8-572149 | No Known Exploit | | medium severity | 300 | Information Exposure
    SNYK-UBUNTU1804-GCC8-572149 | No Known Exploit | | medium severity | 300 | Information Exposure
    SNYK-UBUNTU1804-GCC8-572149 | No Known Exploit | | medium severity | 300 | Improper Verification of Cryptographic Signature
    SNYK-UBUNTU1804-PERL-1930908 | No Known Exploit | | low severity | 150 | Time-of-check Time-of-use (TOCTOU)
    SNYK-UBUNTU1804-SHADOW-306209 | No Known Exploit |


    Note: You are seeing this because you or someone else with access to this repository has authorized Snyk to open fix PRs.

    For more information: 🧐 View latest project report

    πŸ›  Adjust project settings


    Learn how to fix vulnerabilities with free interactive lessons:

    πŸ¦‰ Learn about vulnerability in an interactive lesson of Snyk Learn.

    opened by snyk-bot 0
  • [Snyk] Security upgrade numpy from 1.19.5 to 1.22.0

    [Snyk] Security upgrade numpy from 1.19.5 to 1.22.0

    Snyk has created this PR to fix one or more vulnerable packages in the `pip` dependencies of this project.

    Changes included in this PR

    • Changes to the following files to upgrade the vulnerable dependencies to a fixed version:
      • requirements.txt
    ⚠️ Warning
    torchvision 0.5.0 requires pillow, which is not installed.
    
    

    Vulnerabilities that will be fixed

    By pinning:

    Severity | Priority Score (*) | Issue | Upgrade | Breaking Change | Exploit Maturity :-------------------------:|-------------------------|:-------------------------|:-------------------------|:-------------------------|:------------------------- low severity | 471/1000
    Why? Recently disclosed, Has a fix available, CVSS 3.7 | Buffer Overflow
    SNYK-PYTHON-NUMPY-2321966 | numpy:
    1.19.5 -> 1.22.0
    | No | No Known Exploit low severity | 578/1000
    Why? Proof of Concept exploit, Recently disclosed, Has a fix available, CVSS 3.7 | Buffer Overflow
    SNYK-PYTHON-NUMPY-2321969 | numpy:
    1.19.5 -> 1.22.0
    | No | Proof of Concept low severity | 578/1000
    Why? Proof of Concept exploit, Recently disclosed, Has a fix available, CVSS 3.7 | Denial of Service (DoS)
    SNYK-PYTHON-NUMPY-2321970 | numpy:
    1.19.5 -> 1.22.0
    | No | Proof of Concept

    (*) Note that the real score may have changed since the PR was raised.

    Some vulnerabilities couldn't be fully fixed and so Snyk will still find them when the project is tested again. This may be because the vulnerability existed within more than one direct dependency, but not all of the effected dependencies could be upgraded.

    Check the changes in this PR to ensure they won't cause issues with your project.


    Note: You are seeing this because you or someone else with access to this repository has authorized Snyk to open fix PRs.

    For more information: 🧐 View latest project report

    πŸ›  Adjust project settings

    πŸ“š Read more about Snyk's upgrade and patch logic

    opened by snyk-bot 0
  • [Snyk] Security upgrade numpy from 1.19.5 to 1.22.0rc1

    [Snyk] Security upgrade numpy from 1.19.5 to 1.22.0rc1

    Snyk has created this PR to fix one or more vulnerable packages in the `pip` dependencies of this project.

    Changes included in this PR

    • Changes to the following files to upgrade the vulnerable dependencies to a fixed version:
      • requirements.txt
    ⚠️ Warning
    torchvision 0.5.0 requires pillow, which is not installed.
    
    

    Vulnerabilities that will be fixed

    By pinning:

    Severity | Priority Score (*) | Issue | Upgrade | Breaking Change | Exploit Maturity :-------------------------:|-------------------------|:-------------------------|:-------------------------|:-------------------------|:------------------------- low severity | 578/1000
    Why? Proof of Concept exploit, Recently disclosed, Has a fix available, CVSS 3.7 | Buffer Overflow
    SNYK-PYTHON-NUMPY-2321969 | numpy:
    1.19.5 -> 1.22.0rc1
    | No | Proof of Concept low severity | 578/1000
    Why? Proof of Concept exploit, Recently disclosed, Has a fix available, CVSS 3.7 | Denial of Service (DoS)
    SNYK-PYTHON-NUMPY-2321970 | numpy:
    1.19.5 -> 1.22.0rc1
    | No | Proof of Concept

    (*) Note that the real score may have changed since the PR was raised.

    Some vulnerabilities couldn't be fully fixed and so Snyk will still find them when the project is tested again. This may be because the vulnerability existed within more than one direct dependency, but not all of the effected dependencies could be upgraded.

    Check the changes in this PR to ensure they won't cause issues with your project.


    Note: You are seeing this because you or someone else with access to this repository has authorized Snyk to open fix PRs.

    For more information: 🧐 View latest project report

    πŸ›  Adjust project settings

    πŸ“š Read more about Snyk's upgrade and patch logic

    opened by snyk-bot 0
  • [Snyk] Security upgrade setuptools from 39.0.1 to 65.5.1

    [Snyk] Security upgrade setuptools from 39.0.1 to 65.5.1

    This PR was automatically created by Snyk using the credentials of a real user.


    Snyk has created this PR to fix one or more vulnerable packages in the `pip` dependencies of this project.

    Changes included in this PR

    • Changes to the following files to upgrade the vulnerable dependencies to a fixed version:
      • requirements.txt
    ⚠️ Warning
    torchvision 0.5.0 requires pillow, which is not installed.
    sympy 1.5.1 requires mpmath, which is not installed.
    coremltools 6.1 requires protobuf, which is not installed.
    
    

    Vulnerabilities that will be fixed

    By pinning:

    Severity | Priority Score (*) | Issue | Upgrade | Breaking Change | Exploit Maturity :-------------------------:|-------------------------|:-------------------------|:-------------------------|:-------------------------|:------------------------- medium severity | 551/1000
    Why? Recently disclosed, Has a fix available, CVSS 5.3 | Regular Expression Denial of Service (ReDoS)
    SNYK-PYTHON-SETUPTOOLS-3180412 | setuptools:
    39.0.1 -> 65.5.1
    | No | No Known Exploit

    (*) Note that the real score may have changed since the PR was raised.

    Some vulnerabilities couldn't be fully fixed and so Snyk will still find them when the project is tested again. This may be because the vulnerability existed within more than one direct dependency, but not all of the affected dependencies could be upgraded.

    Check the changes in this PR to ensure they won't cause issues with your project.


    Note: You are seeing this because you or someone else with access to this repository has authorized Snyk to open fix PRs.

    For more information: 🧐 View latest project report

    πŸ›  Adjust project settings

    πŸ“š Read more about Snyk's upgrade and patch logic


    Learn how to fix vulnerabilities with free interactive lessons:

    πŸ¦‰ Regular Expression Denial of Service (ReDoS)

    opened by geekjr 0
  • [Snyk] Security upgrade setuptools from 39.0.1 to 65.5.1

    [Snyk] Security upgrade setuptools from 39.0.1 to 65.5.1

    This PR was automatically created by Snyk using the credentials of a real user.


    Snyk has created this PR to fix one or more vulnerable packages in the `pip` dependencies of this project.

    Changes included in this PR

    • Changes to the following files to upgrade the vulnerable dependencies to a fixed version:
      • requirements.txt
    ⚠️ Warning
    torchvision 0.5.0 requires numpy, which is not installed.
    torchvision 0.5.0 requires pillow, which is not installed.
    
    

    Vulnerabilities that will be fixed

    By pinning:

    Severity | Priority Score (*) | Issue | Upgrade | Breaking Change | Exploit Maturity :-------------------------:|-------------------------|:-------------------------|:-------------------------|:-------------------------|:------------------------- low severity | 441/1000
    Why? Recently disclosed, Has a fix available, CVSS 3.1 | Regular Expression Denial of Service (ReDoS)
    SNYK-PYTHON-SETUPTOOLS-3113904 | setuptools:
    39.0.1 -> 65.5.1
    | No | No Known Exploit

    (*) Note that the real score may have changed since the PR was raised.

    Some vulnerabilities couldn't be fully fixed and so Snyk will still find them when the project is tested again. This may be because the vulnerability existed within more than one direct dependency, but not all of the affected dependencies could be upgraded.

    Check the changes in this PR to ensure they won't cause issues with your project.


    Note: You are seeing this because you or someone else with access to this repository has authorized Snyk to open fix PRs.

    For more information: 🧐 View latest project report

    πŸ›  Adjust project settings

    πŸ“š Read more about Snyk's upgrade and patch logic


    Learn how to fix vulnerabilities with free interactive lessons:

    πŸ¦‰ Regular Expression Denial of Service (ReDoS)

    opened by geekjr 0
  • [Snyk] Security upgrade protobuf from 3.20.1 to 3.20.2

    [Snyk] Security upgrade protobuf from 3.20.1 to 3.20.2

    Snyk has created this PR to fix one or more vulnerable packages in the `pip` dependencies of this project.

    Changes included in this PR

    • Changes to the following files to upgrade the vulnerable dependencies to a fixed version:
      • requirements.txt
    ⚠️ Warning
    torchvision 0.5.0 requires pillow, which is not installed.
    sympy 1.5.1 requires mpmath, which is not installed.
    coremltools 6.0 requires protobuf, which is not installed.
    
    

    Vulnerabilities that will be fixed

    By pinning:

    Severity | Priority Score (*) | Issue | Upgrade | Breaking Change | Exploit Maturity :-------------------------:|-------------------------|:-------------------------|:-------------------------|:-------------------------|:------------------------- medium severity | 571/1000
    Why? Recently disclosed, Has a fix available, CVSS 5.7 | Denial of Service (DoS)
    SNYK-PYTHON-PROTOBUF-3031740 | protobuf:
    3.20.1 -> 3.20.2
    | No | No Known Exploit

    (*) Note that the real score may have changed since the PR was raised.

    Some vulnerabilities couldn't be fully fixed and so Snyk will still find them when the project is tested again. This may be because the vulnerability existed within more than one direct dependency, but not all of the affected dependencies could be upgraded.

    Check the changes in this PR to ensure they won't cause issues with your project.


    Note: You are seeing this because you or someone else with access to this repository has authorized Snyk to open fix PRs.

    For more information: 🧐 View latest project report

    πŸ›  Adjust project settings

    πŸ“š Read more about Snyk's upgrade and patch logic


    Learn how to fix vulnerabilities with free interactive lessons:

    πŸ¦‰ Learn about vulnerability in an interactive lesson of Snyk Learn.

    opened by snyk-bot 0
Releases(2.0.0)
Create large-scale ML-driven multiscale simulation ensembles to study the interactions

MuMMI RAS v0.1 Released: Nov 16, 2021 MuMMI RAS is the application component of the MuMMI framework developed to create large-scale ML-driven multisca

4 Feb 16, 2022
(3D): LeGO-LOAM, LIO-SAM, and LVI-SAM installation and application

SLAM-application: installation and test (3D): LeGO-LOAM, LIO-SAM, and LVI-SAM Tested on Quadruped robot in Gazebo ● Results: video, video2 Requirement

EungChang-Mason-Lee 203 Dec 26, 2022
A simple application that calculates the probability distribution of a normal distribution

probability-density-function General info An application that calculates the probability density and cumulative distribution of a normal distribution

1 Oct 25, 2022
ο»ΏGreykite: A flexible, intuitive and fast forecasting library

The Greykite library provides flexible, intuitive and fast forecasts through its flagship algorithm, Silverkite.

LinkedIn 1.4k Jan 15, 2022
Optimal Randomized Canonical Correlation Analysis

ORCCA Optimal Randomized Canonical Correlation Analysis This project is for the python version of ORCCA algorithm. It depends on Numpy for matrix calc

Yinsong Wang 1 Nov 21, 2021
Open-Source CI/CD platform for ML teams. Deliver ML products, better & faster. βš‘οΈπŸ§‘β€πŸ”§

Deliver ML products, better & faster Giskard is an Open-Source CI/CD platform for ML teams. Inspect ML models visually from your Python notebook πŸ“— Re

Giskard 335 Jan 04, 2023
Learn Machine Learning Algorithms by doing projects in Python and R Programming Language

Learn Machine Learning Algorithms by doing projects in Python and R Programming Language. This repo covers all aspect of Machine Learning Algorithms.

Ravi Chaubey 6 Oct 20, 2022
Python based GBDT implementation

Py-boost: a research tool for exploring GBDTs Modern gradient boosting toolkits are very complex and are written in low-level programming languages. A

Sberbank AI Lab 20 Sep 21, 2022
Machine Learning Model to predict the payment date of an invoice when it gets created in the system.

Payment-Date-Prediction Machine Learning Model to predict the payment date of an invoice when it gets created in the system.

15 Sep 09, 2022
Solve automatic numerical differentiation problems in one or more variables.

numdifftools The numdifftools library is a suite of tools written in _Python to solve automatic numerical differentiation problems in one or more vari

Per A. Brodtkorb 181 Dec 16, 2022
SmartSim makes it easier to use common Machine Learning (ML) libraries like PyTorch and TensorFlow

SmartSim makes it easier to use common Machine Learning (ML) libraries like PyTorch and TensorFlow, in High Performance Computing (HPC) simulations and workloads.

This is my implementation on the K-nearest neighbors algorithm from scratch using Python

K Nearest Neighbors (KNN) algorithm In this Machine Learning world, there are various algorithms designed for classification problems such as Logistic

sonny1902 1 Jan 08, 2022
Given the names and grades for each student in a class N of students, store them in a nested list and print the name(s) of any student(s) having the second lowest grade.

Hackerank-Nested-List Given the names and grades for each student in a class N of students, store them in a nested list and print the name(s) of any s

Sangeeth Mathew John 2 Dec 14, 2021
Empyrial is a Python-based open-source quantitative investment library dedicated to financial institutions and retail investors

By Investors, For Investors. Want to read this in Chinese? Click here Empyrial is a Python-based open-source quantitative investment library dedicated

Santosh 640 Dec 31, 2022
This handbook accompanies the course: Machine Learning with Hung-Yi Lee

This handbook accompanies the course: Machine Learning with Hung-Yi Lee

RenChu Wang 472 Dec 31, 2022
BentoML is a flexible, high-performance framework for serving, managing, and deploying machine learning models.

Model Serving Made Easy BentoML is a flexible, high-performance framework for serving, managing, and deploying machine learning models. Supports multi

BentoML 4.4k Jan 04, 2023
Built various Machine Learning algorithms (Logistic Regression, Random Forest, KNN, Gradient Boosting and XGBoost. etc)

Built various Machine Learning algorithms (Logistic Regression, Random Forest, KNN, Gradient Boosting and XGBoost. etc). Structured a custom ensemble model and a neural network. Found a outperformed

Chris Yuan 1 Feb 06, 2022
Crypto-trading - ML techiques are used to forecast short term returns in 14 popular cryptocurrencies

Crypto-trading - ML techiques are used to forecast short term returns in 14 popular cryptocurrencies. We have amassed a dataset of millions of rows of high-frequency market data dating back to 2018 w

Panagiotis (Panos) Mavritsakis 4 Sep 22, 2022
The Simpsons and Machine Learning: What makes an Episode Great?

The Simpsons and Machine Learning: What makes an Episode Great? Check out my Medium article on this! PROBLEM: The Simpsons has had a decline in qualit

1 Nov 02, 2021
Tools for mathematical optimization region

Tools for mathematical optimization region

ζž—ζ™― 15 Nov 30, 2022