Tools for mathematical optimization region

Overview

README.md

中文博客主页:https://blog.csdn.net/linjing_zyq

pip install optimtool

1. 无约束优化算法性能对比

前五个参数完全一致,其中第四个参数是绘图接口,默认绘制单个算法的迭代过程;第五个参数是输出函数迭代值接口,默认为不输出。

method:用于传递线搜索方式

  • from optimtool.unconstrain import gradient_descent
方法 函数参数 调用示例
解方程得到精确解法(solve) solve(funcs, args, x_0, draw=True, output_f=False, epsilon=1e-10, k=0) gradient_descent.solve(funcs, args, x_0)
基于Grippo非单调线搜索的梯度下降法 barzilar_borwein(funcs, args, x_0, draw=True, output_f=False, method="grippo", M=20, c1=0.6, beta=0.6, alpha=1, epsilon=1e-10, k=0) gradient_descent.barzilar_borwein(funcs, args, x_0, method="grippo")
基于ZhangHanger非单调线搜索的梯度下降法 barzilar_borwein(funcs, args, x_0, draw=True, output_f=False, method="ZhangHanger", M=20, c1=0.6, beta=0.6, alpha=1, epsilon=1e-10, k=0) gradient_descent.barzilar_borwein(funcs, args, x_0, method="ZhangHanger")
基于最速下降法的梯度下降法 steepest(funcs, args, x_0, draw=True, output_f=False, method="wolfe", epsilon=1e-10, k=0) gradient_descent.steepest(funcs, args, x_0)
  • from optimtool.unconstrain import newton
方法 函数参数 调用示例
经典牛顿法 classic(funcs, args, x_0, draw=True, output_f=False, epsilon=1e-10, k=0) newton.classic(funcs, args, x_0)
基于armijo线搜索方法的修正牛顿法 modified(funcs, args, x_0, draw=True, output_f=False, method="armijo", m=20, epsilon=1e-10, k=0) newton.modified(funcs, args, x_0, method="armijo")
基于goldstein线搜索方法的修正牛顿法 modified(funcs, args, x_0, draw=True, output_f=False, method="goldstein", m=20, epsilon=1e-10, k=0) newton.modified(funcs, args, x_0, method="goldstein")
基于wolfe线搜索方法的修正牛顿法 modified(funcs, args, x_0, draw=True, output_f=False, method="wolfe", m=20, epsilon=1e-10, k=0) newton.modified(funcs, args, x_0, method="wolfe")
基于armijo线搜索方法的非精确牛顿法 CG(funcs, args, x_0, draw=True, output_f=False, method="armijo", epsilon=1e-6, k=0) newton.CG(funcs, args, x_0, method="armijo")
基于goldstein线搜索方法的非精确牛顿法 CG(funcs, args, x_0, draw=True, output_f=False, method="goldstein", epsilon=1e-6, k=0) newton.CG(funcs, args, x_0, method="goldstein")
基于wolfe线搜索方法的非精确牛顿法 CG(funcs, args, x_0, draw=True, output_f=False, method="wolfe", epsilon=1e-6, k=0) newton.CG(funcs, args, x_0, method="wolfe")
  • from optimtool.unconstrain import newton_quasi
方法 函数参数 调用示例
基于BFGS方法更新海瑟矩阵的拟牛顿法 bfgs(funcs, args, x_0, draw=True, output_f=False, method="wolfe", m=20, epsilon=1e-10, k=0) newton_quasi.bfgs(funcs, args, x_0)
基于DFP方法更新海瑟矩阵的拟牛顿法 dfp(funcs, args, x_0, draw=True, output_f=False, method="wolfe", m=20, epsilon=1e-4, k=0) newton_quasi.dfp(funcs, args, x_0)
基于有限内存BFGS方法更新海瑟矩阵的拟牛顿法 L_BFGS(funcs, args, x_0, draw=True, output_f=False, method="wolfe", m=6, epsilon=1e-10, k=0) newton_quasi.L_BFGS(funcs, args, x_0)
  • from optimtool.unconstrain import trust_region
方法 函数参数 调用示例
基于截断共轭梯度法的信赖域算法 steihaug_CG(funcs, args, x_0, draw=True, output_f=False, m=100, r0=1, rmax=2, eta=0.2, p1=0.4, p2=0.6, gamma1=0.5, gamma2=1.5, epsilon=1e-6, k=0) trust_region.steihaug_CG(funcs, args, x_0)
import sympy as sp
import matplotlib.pyplot as plt
import optimtool as oo

f, x1, x2, x3, x4 = sp.symbols("f x1 x2 x3 x4")
f = (x1 - 1)**2 + (x2 - 1)**2 + (x3 - 1)**2 + (x1**2 + x2**2 + x3**2 + x4**2 - 0.25)**2
funcs = sp.Matrix([f])
args = sp.Matrix([x1, x2, x3, x4])
x_0 = (1, 2, 3, 4)

# 无约束优化测试函数性能对比
f_list = []
title = ["gradient_descent_barzilar_borwein", "newton_CG", "newton_quasi_L_BFGS", "trust_region_steihaug_CG"]
colorlist = ["maroon", "teal", "slateblue", "orange"]
_, _, f = oo.unconstrain.gradient_descent.barzilar_borwein(funcs, args, x_0, False, True)
f_list.append(f)
_, _, f = oo.unconstrain.newton.CG(funcs, args, x_0, False, True)
f_list.append(f)
_, _, f = oo.unconstrain.newton_quasi.L_BFGS(funcs, args, x_0, False, True)
f_list.append(f)
_, _, f = oo.unconstrain.trust_region.steihaug_CG(funcs, args, x_0, False, True)
f_list.append(f)

# 绘图
handle = []
for j, z in zip(colorlist, f_list):
    ln, = plt.plot([i for i in range(len(z))], z, c=j, marker='o', linestyle='dashed')
    handle.append(ln)
plt.xlabel("$Iteration \ times \ (k)$")
plt.ylabel("$Objective \ function \ value: \ f(x_k)$")
plt.legend(handle, title)
plt.title("Performance Comparison")
plt.show()

2. 非线性最小二乘问题

  • from optimtool.unconstrain import nonlinear_least_square

method:用于传递线搜索方法

方法 函数参数 调用示例
基于高斯牛顿法的非线性最小二乘问题解法 gauss_newton(funcr, args, x_0, draw=True, output_f=False, method="wolfe", epsilon=1e-10, k=0) nonlinear_least_square.gauss_newton(funcr, args, x_0)
基于levenberg_marquardt的非线性最小二乘问题解法 levenberg_marquardt(funcr, args, x_0, draw=True, output_f=False, m=100, lamk=1, eta=0.2, p1=0.4, p2=0.9, gamma1=0.7, gamma2=1.3, epsilon=1e-10, k=0) nonlinear_least_square.levenberg_marquardt(funcr, args, x_0)
import sympy as sp
import matplotlib.pyplot as plt
import optimtool as oo

r1, r2, x1, x2 = sp.symbols("r1 r2 x1 x2")
r1 = x1**3 - 2*x2**2 - 1
r2 = 2*x1 + x2 - 2
funcr = sp.Matrix([r1, r2])
args = sp.Matrix([x1, x2])
x_0 = (2, 2)

f_list = []
title = ["gauss_newton", "levenberg_marquardt"]
colorlist = ["maroon", "teal"]
_, _, f = oo.unconstrain.nonlinear_least_square.gauss_newton(funcr, args, x_0, False, True) # 第五参数控制输出函数迭代值列表
f_list.append(f)
_, _, f = oo.unconstrain.nonlinear_least_square.levenberg_marquardt(funcr, args, x_0, False, True)
f_list.append(f)

# 绘图
handle = []
for j, z in zip(colorlist, f_list):
    ln, = plt.plot([i for i in range(len(z))], z, c=j, marker='o', linestyle='dashed')
    handle.append(ln)
plt.xlabel("$Iteration \ times \ (k)$")
plt.ylabel("$Objective \ function \ value: \ f(x_k)$")
plt.legend(handle, title)
plt.title("Performance Comparison")
plt.show()

3. 等式约束优化测试

  • from optimtool.constrain import equal

无约束内核默认采用wolfe线搜索方法

方法 函数参数 调用示例
二次罚函数法 penalty_quadratic(funcs, args, cons, x_0, draw=True, output_f=False, method="gradient_descent", sigma=10, p=2, epsilon=1e-4, k=0) equal.penalty_quadratic(funcs, args, cons, x_0)
增广拉格朗日法 lagrange_augmented(funcs, args, cons, x_0, draw=True, output_f=False, method="gradient_descent", lamk=6, sigma=10, p=2, etak=1e-4, epsilon=1e-6, k=0) equal.lagrange_augmented(funcs, args, cons, x_0)
import numpy as np
import sympy as sp
import matplotlib.pyplot as plt
import optimtool as oo

f, x1, x2 = sp.symbols("f x1 x2")
f = x1 + np.sqrt(3) * x2
c1 = x1**2 + x2**2 - 1
funcs = sp.Matrix([f])
cons = sp.Matrix([c1])
args = sp.Matrix([x1, x2])
x_0 = (-1, -1)

f_list = []
title = ["penalty_quadratic", "lagrange_augmented"]
colorlist = ["maroon", "teal"]
_, _, f = oo.constrain.equal.penalty_quadratic(funcs, args, cons, x_0, False, True) # 第四个参数控制单个算法不显示迭代图,第五参数控制输出函数迭代值列表
f_list.append(f)
_, _, f = oo.constrain.equal.lagrange_augmented(funcs, args, cons, x_0, False, True)
f_list.append(f)

# 绘图
handle = []
for j, z in zip(colorlist, f_list):
    ln, = plt.plot([i for i in range(len(z))], z, c=j, marker='o', linestyle='dashed')
    handle.append(ln)
plt.xlabel("$Iteration \ times \ (k)$")
plt.ylabel("$Objective \ function \ value: \ f(x_k)$")
plt.legend(handle, title)
plt.title("Performance Comparison")
plt.show()

4. 不等式约束优化测试

  • from optimtool.constrain import unequal

无约束内核默认采用wolfe线搜索方法

方法 函数参数 调用示例
二次罚函数法 penalty_quadratic(funcs, args, cons, x_0, draw=True, output_f=False, method="gradient_descent", sigma=1, p=0.4, epsilon=1e-10, k=0) unequal.penalty_quadratic(funcs, args, cons, x_0)
内点(分式)罚函数法 penalty_interior_fraction(funcs, args, cons, x_0, draw=True, output_f=False, method="gradient_descent", sigma=12, p=0.6, epsilon=1e-6, k=0) unequal.penalty_interior_fraction(funcs, args, cons, x_0)
拉格朗日法(本质上为不存在等式约束) lagrange_augmented(funcs, args, cons, x_0, draw=True, output_f=False, method="gradient_descent", muk=10, sigma=8, alpha=0.2, beta=0.7, p=2, eta=1e-1, epsilon=1e-4, k=0) unequal.lagrange_augmented(funcs, args, cons, x_0)
import sympy as sp
import matplotlib.pyplot as plt
import optimtool as oo

f, x1, x2 = sp.symbols("f x1 x2")
f = x1**2 + (x2 - 2)**2
c1 = 1 - x1
c2 = 2 - x2
funcs = sp.Matrix([f])
cons = sp.Matrix([c1, c2])
args = sp.Matrix([x1, x2])
x_0 = (2, 3)

f_list = []
title = ["penalty_quadratic", "penalty_interior_fraction"]
colorlist = ["maroon", "teal"]
_, _, f = oo.constrain.unequal.penalty_quadratic(funcs, args, cons, x_0, False, True, method="newton", sigma=10, epsilon=1e-6) # 第四个参数控制单个算法不显示迭代图,第五参数控制输出函数迭代值列表
f_list.append(f)
_, _, f = oo.constrain.unequal.penalty_interior_fraction(funcs, args, cons, x_0, False, True, method="newton")
f_list.append(f)

# 绘图
handle = []
for j, z in zip(colorlist, f_list):
    ln, = plt.plot([i for i in range(len(z))], z, c=j, marker='o', linestyle='dashed')
    handle.append(ln)
plt.xlabel("$Iteration \ times \ (k)$")
plt.ylabel("$Objective \ function \ value: \ f(x_k)$")
plt.legend(handle, title)
plt.title("Performance Comparison")
plt.show()

单独测试拉格朗日方法

# 导入符号运算的包
import sympy as sp

# 导入约束优化
import optimtool as oo

# 构造函数
f1 = sp.symbols("f1")
x1, x2, x3, x4 = sp.symbols("x1 x2 x3 x4")
f1 = x1**2 + x2**2 + 2*x3**3 + x4**2 - 5*x1 - 5*x2 - 21*x3 + 7*x4
c1 = 8 - x1 + x2 - x3 + x4 - x1**2 - x2**2 - x3**2 - x4**2
c2 = 10 + x1 + x4 - x1**2 - 2*x2**2 - x3**2 - 2*x4**2
c3 = 5 - 2*x1 + x2 + x4 - 2*x1**2 - x2**2 - x3**2
cons_unequal1 = sp.Matrix([c1, c2, c3])
funcs1 = sp.Matrix([f1])
args1 = sp.Matrix([x1, x2, x3, x4])
x_1 = (0, 0, 0, 0)

x_0, _, f = oo.constrain.unequal.lagrange_augmented(funcs1, args1, cons_unequal1, x_1, output_f=True, method="trust_region", sigma=1, muk=1, p=1.2)
for i in range(len(x_0)):
     x_0[i] = round(x_0[i], 2)
print("\n最终收敛点:", x_0, "\n目标函数值:", f[-1])

result

最终收敛点: [ 2.5   2.5   1.87 -3.5 ] 
目标函数值: -50.94151192711454

5. 混合等式约束测试

  • from optimtool.constrain import mixequal

无约束内核默认采用wolfe线搜索方法

方法 函数参数 调用示例
二次罚函数法 penalty_quadratic(funcs, args, cons_equal, cons_unequal, x_0, draw=True, output_f=False, method="gradient_descent", sigma=1, p=0.6, epsilon=1e-10, k=0) mixequal.penalty_quadratic(funcs, args, cons_equal, cons_unequal, x_0)
L1罚函数法 penalty_L1(funcs, args, cons_equal, cons_unequal, x_0, draw=True, output_f=False, method="gradient_descent", sigma=1, p=0.6, epsilon=1e-10, k=0) mixequal.penalty_L1(funcs, args, cons_equal, cons_unequal, x_0)
增广拉格朗日函数法 lagrange_augmented(funcs, args, cons_equal, cons_unequal, x_0, draw=True, output_f=False, method="gradient_descent", lamk=6, muk=10, sigma=8, alpha=0.5, beta=0.7, p=2, eta=1e-3, epsilon=1e-4, k=0) mixequal.lagrange_augmented(funcs, args, cons_equal, cons_unequal, x_0)
import sympy as sp
import matplotlib.pyplot as plt
import optimtool as oo

f, x1, x2 = sp.symbols("f x1 x2")
f = (x1 - 2)**2 + (x2 - 1)**2
c1 = x1 - 2*x2
c2 = 0.25*x1**2 - x2**2 - 1
funcs = sp.Matrix([f])
cons_equal = sp.Matrix([c1])
cons_unequal = sp.Matrix([c2])
args = sp.Matrix([x1, x2])
x_0 = (0.5, 1)

f_list = []
title = ["penalty_quadratic", "penalty_L1", "lagrange_augmented"]
colorlist = ["maroon", "teal", "orange"]
_, _, f = oo.constrain.mixequal.penalty_quadratic(funcs, args, cons_equal, cons_unequal, x_0, False, True) # 第四个参数控制单个算法不显示迭代图,第五参数控制输出函数迭代值列表
f_list.append(f)
_, _, f = oo.constrain.mixequal.penalty_L1(funcs, args, cons_equal, cons_unequal, x_0, False, True)
f_list.append(f)
_, _, f = oo.constrain.mixequal.lagrange_augmented(funcs, args, cons_equal, cons_unequal, x_0, False, True)
f_list.append(f)

# 绘图
handle = []
for j, z in zip(colorlist, f_list):
    ln, = plt.plot([i for i in range(len(z))], z, c=j, marker='o', linestyle='dashed')
    handle.append(ln)
plt.xlabel("$Iteration \ times \ (k)$")
plt.ylabel("$Objective \ function \ value: \ f(x_k)$")
plt.legend(handle, title)
plt.title("Performance Comparison")
plt.show()

6. Lasso问题测试

  • from optimtool.example import Lasso
方法 函数参数 调用示例
梯度下降法 gradient_descent(A, b, mu, args, x_0, draw=True, output_f=False, delta=10, alp=1e-3, epsilon=1e-2, k=0) Lasso.gradient_descent(A, b, mu, args, x_0,)
次梯度算法 subgradient(A, b, mu, args, x_0, draw=True, output_f=False, alphak=2e-2, epsilon=1e-3, k=0) Lasso.subgradient(A, b, mu, args, x_0,)
import numpy as np
import sympy as sp
import matplotlib.pyplot as plt
import optimtool as oo

import scipy.sparse as ss
f, A, b, mu = sp.symbols("f A b mu")
x = sp.symbols('x1:9')
m = 4
n = 8
u = (ss.rand(n, 1, 0.1)).toarray()
A = np.random.randn(m, n)
b = A.dot(u)
mu = 1e-2
args = sp.Matrix(x)
x_0 = tuple([1 for i in range(8)])

f_list = []
title = ["gradient_descent", "subgradient"]
colorlist = ["maroon", "teal"]
_, _, f = oo.example.Lasso.gradient_descent(A, b, mu, args, x_0, False, True, epsilon=1e-4)# 第四个参数控制单个算法不显示迭代图,第五参数控制输出函数迭代值列表
f_list.append(f)
_, _, f = oo.example.Lasso.subgradient(A, b, mu, args, x_0, False, True)
f_list.append(f)

# 绘图
handle = []
for j, z in zip(colorlist, f_list):
    ln, = plt.plot([i for i in range(len(z))], z, c=j, marker='o', linestyle='dashed')
    handle.append(ln)
plt.xlabel("$Iteration \ times \ (k)$")
plt.ylabel("$Objective \ function \ value: \ f(x_k)$")
plt.legend(handle, title)
plt.title("Performance Comparison")
plt.show()

7. WanYuan问题测试

  • from optimtool.example import WanYuan
方法 函数参数 调用示例
构造7个残差函数并采用高斯牛顿法 gauss_newton(m, n, a, b, c, x3, y3, x_0, draw=False, eps=1e-10) WanYuan.gauss_newton(1, 2, 0.2, -1.4, 2.2, 2**(1/2), 0, (0, -1, -2.5, -0.5, 2.5, -0.05), draw=True)

问题描述

给定直线方程的斜率($m$)与截距($n$),给定一元二次方程的二次项系数($a$)、一次项系数($b$)、常数($c$),给定一个过定点的圆($x_3$,$y_3$​​),要求这个过定点的圆与直线($x_1$,$y_1$)和抛物线($x_2$,$y_2$)相切的切点以及该圆的圆心($x_0$,$y_0$)。

code

# 导包
import sympy as sp
import matplotlib.pyplot as plt
import optimtool as oo

# 构造数据
m = 1
n = 2
a = 0.2
b = -1.4
c = 2.2
x3 = 2*(1/2)
y3 = 0
x_0 = (0, -1, -2.5, -0.5, 2.5, -0.05)

# 训练
oo.example.WanYuan.gauss_newton(1, 2, 0.2, -1.4, 2.2, 2**(1/2), 0, (0, -1, -2.5, -0.5, 2.5, -0.05), draw=True)
You might also like...
A Python step-by-step primer for Machine Learning and Optimization

early-ML Presentation General Machine Learning tutorials A Python step-by-step primer for Machine Learning and Optimization This github repository gat

Implementation of linesearch Optimization Algorithms in Python

Nonlinear Optimization Algorithms During my time as Scientific Assistant at the Karlsruhe Institute of Technology (Germany) I implemented various Opti

Microsoft contributing libraries, tools, recipes, sample codes and workshop contents for machine learning & deep learning.

Microsoft contributing libraries, tools, recipes, sample codes and workshop contents for machine learning & deep learning.

A single Python file with some tools for visualizing machine learning in the terminal.
A single Python file with some tools for visualizing machine learning in the terminal.

Machine Learning Visualization Tools A single Python file with some tools for visualizing machine learning in the terminal. This demo is composed of t

🔬 A curated list of awesome machine learning strategies & tools in financial market.

🔬 A curated list of awesome machine learning strategies & tools in financial market.

A Tools that help Data Scientists and ML engineers train and deploy ML models.

Domino Research This repo contains projects under active development by the Domino R&D team. We build tools that help Data Scientists and ML engineers

A collection of Scikit-Learn compatible time series transformers and tools.
A collection of Scikit-Learn compatible time series transformers and tools.

tsfeast A collection of Scikit-Learn compatible time series transformers and tools. Installation Create a virtual environment and install: From PyPi p

Tools for Optuna, MLflow and the integration of both.
Tools for Optuna, MLflow and the integration of both.

HPOflow - Sphinx DOC Tools for Optuna, MLflow and the integration of both. Detailed documentation with examples can be found here: Sphinx DOC Table of

ClearML - Auto-Magical Suite of tools to streamline your ML workflow. Experiment Manager, MLOps and Data-Management
ClearML - Auto-Magical Suite of tools to streamline your ML workflow. Experiment Manager, MLOps and Data-Management

ClearML - Auto-Magical Suite of tools to streamline your ML workflow Experiment Manager, MLOps and Data-Management ClearML Formerly known as Allegro T

Comments
  • Minimize the Amount of Guided Packages

    Minimize the Amount of Guided Packages

    Is it necessary to reconstruct the matrix operation system of numpy and the symbolic algebra operation system of sympy in order to reduce the amount of dependent packets in the process of guilding packets.

    opened by zzqwdwd 1
Releases(v1.5)
  • v1.5(Nov 10, 2022)

    This version reduces the memory pressure caused by typing compared to v1.4.

    import optimtool as oo
    x1, x2, x3, x4 = sp.symbols("x1 x2 x3 x4") # Declare symbolic variables
    f = (x1 - 1)**2 + (x2 - 1)**2 + (x3 - 1)**2 + (x1**2 + x2**2 + x3**2 + x4**2 - 0.25)**2
    oo.unconstrain.gradient_descent.barzilar_borwein(f, [x1, x2, x3, x4], (1, 2, 3, 4)) # funcs, args, x_0
    
    Source code(tar.gz)
    Source code(zip)
  • v1.4(Nov 8, 2022)

    import optimtool as oo
    x1, x2, x3, x4 = sp.symbols("x1 x2 x3 x4") # Declare symbolic variables
    f = (x1 - 1)**2 + (x2 - 1)**2 + (x3 - 1)**2 + (x1**2 + x2**2 + x3**2 + x4**2 - 0.25)**2
    oo.unconstrain.gradient_descent.barzilar_borwein(f, [x1, x2, x3, x4], (1, 2, 3, 4)) # funcs, args, x_0
    

    Use FuncArray, ArgArray, PointArray, IterPointType, OutputType in typing, and delete functions/ folder. I use many means to accelerate the method, I can't enumerate them here.

    Source code(tar.gz)
    Source code(zip)
  • v1.3(Apr 25, 2022)

    In v2.3.4, We call a method as follows:

    import optimtool as oo
    x1, x2, x3, x4 = sp.symbols("x1 x2 x3 x4")
    f = (x1 - 1)**2 + (x2 - 1)**2 + (x3 - 1)**2 + (x1**2 + x2**2 + x3**2 + x4**2 - 0.25)**2
    funcs = sp.Matrix([f])
    args = sp.Matrix([x1, x2, x3, x4])
    x_0 = (1, 2, 3, 4)
    oo.unconstrain.gradient_descent.barzilar_borwein(funcs, args, x_0)
    

    But in v2.3.5, We now call a method as follows: (It reduces the trouble of constructing data externally.)

    import optimtool as oo
    x1, x2, x3, x4 = sp.symbols("x1 x2 x3 x4") # Declare symbolic variables
    f = (x1 - 1)**2 + (x2 - 1)**2 + (x3 - 1)**2 + (x1**2 + x2**2 + x3**2 + x4**2 - 0.25)**2
    oo.unconstrain.gradient_descent.barzilar_borwein(f, [x1, x2, x3, x4], (1, 2, 3, 4)) # funcs, args, x_0
    # funcs(args) can be list, tuple, sp.Matrix
    

    Our function parameter input method is similar to matlab, and supports more methods than matlab.

    Source code(tar.gz)
    Source code(zip)
Python package for stacking (machine learning technique)

vecstack Python package for stacking (stacked generalization) featuring lightweight functional API and fully compatible scikit-learn API Convenient wa

Igor Ivanov 671 Dec 25, 2022
Polyglot Machine Learning example for scraping similar news articles.

Polyglot Machine Learning example for scraping similar news articles In this example, we will see how we can work with Machine Learning applications w

MetaCall 15 Mar 28, 2022
Microsoft contributing libraries, tools, recipes, sample codes and workshop contents for machine learning & deep learning.

Microsoft contributing libraries, tools, recipes, sample codes and workshop contents for machine learning & deep learning.

Microsoft 366 Jan 03, 2023
A classification model capable of accurately predicting the price of secondhand cars

The purpose of this project is create a classification model capable of accurately predicting the price of secondhand cars. The data used for model building is open source and has been added to this

Akarsh Singh 2 Sep 13, 2022
Production Grade Machine Learning Service

This project is made to help you scale from a basic Machine Learning project for research purposes to a production grade Machine Learning web service

Abdullah Zaiter 10 Apr 04, 2022
Apache Spark & Python (pySpark) tutorials for Big Data Analysis and Machine Learning as IPython / Jupyter notebooks

Spark Python Notebooks This is a collection of IPython notebook/Jupyter notebooks intended to train the reader on different Apache Spark concepts, fro

Jose A Dianes 1.5k Jan 02, 2023
ClearML - Auto-Magical Suite of tools to streamline your ML workflow. Experiment Manager, MLOps and Data-Management

ClearML - Auto-Magical Suite of tools to streamline your ML workflow Experiment Manager, MLOps and Data-Management ClearML Formerly known as Allegro T

ClearML 4k Jan 09, 2023
Simple structured learning framework for python

PyStruct PyStruct aims at being an easy-to-use structured learning and prediction library. Currently it implements only max-margin methods and a perce

pystruct 666 Jan 03, 2023
Examples and code for the Practical Machine Learning workshop series

Practical Machine Learning Workshop Series Practical Machine Learning for Quantitative Finance Post conference workshop at the WBS Spring Conference D

CompatibL 21 Jun 25, 2022
A handy tool for common machine learning models' hyper-parameter tuning.

Common machine learning models' hyperparameter tuning This repo is for a collection of hyper-parameter tuning for "common" machine learning models, in

Kevin Hu 2 Jan 27, 2022
JMP is a Mixed Precision library for JAX.

Mixed precision training [0] is a technique that mixes the use of full and half precision floating point numbers during training to reduce the memory bandwidth requirements and improve the computatio

DeepMind 108 Dec 31, 2022
MooGBT is a library for Multi-objective optimization in Gradient Boosted Trees.

MooGBT is a library for Multi-objective optimization in Gradient Boosted Trees. MooGBT optimizes for multiple objectives by defining constraints on sub-objective(s) along with a primary objective. Th

Swiggy 66 Dec 06, 2022
fastFM: A Library for Factorization Machines

Citing fastFM The library fastFM is an academic project. The time and resources spent developing fastFM are therefore justified by the number of citat

1k Dec 24, 2022
Provide an input CSV and a target field to predict, generate a model + code to run it.

automl-gs Give an input CSV file and a target field you want to predict to automl-gs, and get a trained high-performing machine learning or deep learn

Max Woolf 1.8k Jan 04, 2023
Automatically build ARIMA, SARIMAX, VAR, FB Prophet and XGBoost Models on Time Series data sets with a Single Line of Code. Now updated with Dask to handle millions of rows.

Auto_TS: Auto_TimeSeries Automatically build multiple Time Series models using a Single Line of Code. Now updated with Dask. Auto_timeseries is a comp

AutoViz and Auto_ViML 519 Jan 03, 2023
A Streamlit demo to interactively visualize Uber pickups in New York City

Streamlit Demo: Uber Pickups in New York City A Streamlit demo written in pure Python to interactively visualize Uber pickups in New York City. View t

Streamlit 230 Dec 28, 2022
ThunderGBM: Fast GBDTs and Random Forests on GPUs

Documentations | Installation | Parameters | Python (scikit-learn) interface What's new? ThunderGBM won 2019 Best Paper Award from IEEE Transactions o

Xtra Computing Group 648 Dec 16, 2022
using Machine Learning Algorithm to classification AppleStore application

AppleStore-classification-with-Machine-learning-Algo- using Machine Learning Algorithm to classification AppleStore application. the first step : 1: p

Mohammed Hussien 2 May 02, 2022
Built on python (Mathematical straight fit line coordinates error predictor machine learning foundational model)

Sum-Square_Error-Business-Analytical-Tool- Built on python (Mathematical straight fit line coordinates error predictor machine learning foundational m

om Podey 1 Dec 03, 2021
MegFlow - Efficient ML solutions for long-tailed demands.

Efficient ML solutions for long-tailed demands.

旷视天元 MegEngine 371 Dec 21, 2022