Simple and flexible ML workflow engine.

Overview

Katana ML Skipper

PyPI - Python GitHub Stars GitHub Issues Current Version

This is a simple and flexible ML workflow engine. It helps to orchestrate events across a set of microservices and create executable flow to handle requests. Engine is designed to be configurable with any microservices. Enjoy!

Skipper

Author

Katana ML, Andrej Baranovskij

Instructions

Start/Stop

Docker Compose

Start:

docker-compose up --build -d

Stop:

docker-compose down

This will start RabbitMQ container. To run engine and services, navigate to related folders and follow instructions.

Web API FastAPI endpoint:

http://127.0.0.1:8080/api/v1/skipper/tasks/docs

Kubernetes

NGINX Ingress Controller:

If you are using local Kubernetes setup, install NGINX Ingress Controller

Build Docker images:

docker-compose -f docker-compose-kubernetes.yml build

Setup Kubernetes services:

./kubectl-setup.sh

Skipper API endpoint published through NGINX Ingress (you can setup your own host in /etc/hosts):

http://kubernetes.docker.internal/api/v1/skipper/tasks/docs

Check NGINX Ingress Controller pod name:

kubectl get pods -n ingress-nginx

Sample response, copy the name of 'Running' pod:

NAME                                       READY   STATUS      RESTARTS   AGE
ingress-nginx-admission-create-dhtcm       0/1     Completed   0          14m
ingress-nginx-admission-patch-x8zvw        0/1     Completed   0          14m
ingress-nginx-controller-fd7bb8d66-tnb9t   1/1     Running     0          14m

NGINX Ingress Controller logs:

kubectl logs -n ingress-nginx -f 
   

   

Skipper API logs:

kubectl logs -n katana-skipper -f -l app=skipper-api

Remove Kubernetes services:

./kubectl-remove.sh

Components

  • api - Web API implementation
  • workflow - workflow logic
  • services - a set of sample microservices, you should replace this with your own services. Update references in docker-compose.yml
  • rabbitmq - service for RabbitMQ broker
  • skipper-lib - reusable Python library to streamline event communication through RabbitMQ
  • logger - logger service

URLs

  • Web API
http://127.0.0.1:8080/api/v1/skipper/tasks/docs

If running on local Kubernetes with Docker Desktop:

http://kubernetes.docker.internal/api/v1/skipper/tasks/docs
  • RabbitMQ:
http://localhost:15672/ (skipper/welcome1)

If running on local Kubernets, make sure port forwarding is enabled:

kubectl -n rabbits port-forward rabbitmq-0 15672:15672
  • PyPI
https://pypi.org/project/skipper-lib/
  • OCI - deployment guide for Oracle Cloud

Usage

You can use Skipper engine to run Web API, workflow and communicate with a group of ML microservices implemented under services package.

Skipper can be deployed to any Cloud vendor with Kubernetes or Docker support. You can scale Skipper runtime on Cloud using Kubernetes commands.

License

Licensed under the Apache License, Version 2.0. Copyright 2020-2021 Katana ML, Andrej Baranovskij. Copy of the license.

Comments
  • Cache EventProducer

    Cache EventProducer

    I found that cache the EventProducer can improve performace 40%. I tried but it block may request when increase the speed test. Do you have suggest to fix that

    opened by manhtd98 7
  • Docker-compose up not working

    Docker-compose up not working

    Hi

    Thank you for the wonderful katana-skipper. I am trying to digest the library and execute the docker-compose.yml. But it seems like it is not working.

    Would appreciate it if you could take a look

    good first issue 
    opened by jamesee 6
  • Doc: How to add a new service with a new queue

    Doc: How to add a new service with a new queue

    How do we add a new service with a new queue called translator?

    1. I add a new router adding a new path for my new service defining a new prefix and tag named translator.
    2. I create a new request model for my new service in models.py containing task_type and expect a type translator and a payload
    3. I define a new service container with the correct variables and set my SERVICE=translator and QUEUE_NAME=skipper_translator

    I am able to call the new endpoint and it returns:

    task_id: "-", 
    task_status: "Success", 
    outcome: "<starlette.responses.JSONResponse object at 0x7ff2672dbed0>"
    

    However the container is never triggered.

    What am I missing?

    opened by ladrua 4
  • The difference between event_producer and exchange_producer

    The difference between event_producer and exchange_producer

    Hello, Thanks for sharing your ML workflow. I appreciate if you could explain the difference between event_producer and exchange_producer. event_producer is used to produce an event to rabbitmq, but exchange_producer is not clear to me. Can't we use event_producer in place of exchange_producer?

    good first issue 
    opened by fadishaar84 4
  • Encountering Authentication Issues

    Encountering Authentication Issues

    When I run the start command on docker I get the following error in the data-service container. Would greatly appreciate guidance on how to fix this issue. ` data-service katanaml/data-service RUNNING

    Traceback (most recent call last):

    File "main.py", line 19, in

    main()
    

    File "main.py", line 15, in main

    'http://127.0.0.1:5001/api/v1/skipper/logger/log_receiver'))
    

    File "/usr/local/lib/python3.7/site-packages/skipper_lib/events/event_receiver.py", line 16, in init

    credentials=credentials))
    

    File "/usr/local/lib/python3.7/site-packages/pika/adapters/blocking_connection.py", line 360, in init

    self._impl = self._create_connection(parameters, _impl_class)
    

    File "/usr/local/lib/python3.7/site-packages/pika/adapters/blocking_connection.py", line 451, in _create_connection

    raise self._reap_last_connection_workflow_error(error)
    

    pika.exceptions.AMQPConnectionError

    Traceback (most recent call last):

    File "main.py", line 19, in

    main()
    

    File "main.py", line 15, in main

    'http://127.0.0.1:5001/api/v1/skipper/logger/log_receiver'))
    

    File "/usr/local/lib/python3.7/site-packages/skipper_lib/events/event_receiver.py", line 16, in init

    credentials=credentials))
    

    File "/usr/local/lib/python3.7/site-packages/pika/adapters/blocking_connection.py", line 360, in init

    self._impl = self._create_connection(parameters, _impl_class)
    

    File "/usr/local/lib/python3.7/site-packages/pika/adapters/blocking_connection.py", line 451, in _create_connection

    raise self._reap_last_connection_workflow_error(error)
    

    pika.exceptions.ProbableAuthenticationError: ConnectionClosedByBroker: (403) 'ACCESS_REFUSED - Login was refused using authentication mechanism PLAIN. For details see the broker logfi`

    opened by LM-01 3
  • How can we move from docker compose to kubernetes?

    How can we move from docker compose to kubernetes?

    Hello Andrej, I would like to ask about how to move from docker-compose to Kubernetes, do we have to use some tools like kompose or other tools, I appreciate if you could guide me a little bit about how to perform this conversion to run our services on Skipper not using docker compose but kubernetes. Thank you.

    opened by fadishaar84 2
Releases(v1.1.0)
  • v1.1.0(Dec 11, 2021)

    This release of Katana ML Skipper includes:

    • Skipper Lib JS - support for Node.js containers
    • Error handling
    • Configurable FastAPI endpoints
    • Various improvements and bug fixes

    What's Changed

    • (README.md) Adding Andrej's profile url by @xandrade in https://github.com/katanaml/katana-skipper/pull/3

    New Contributors

    • @xandrade made their first contribution in https://github.com/katanaml/katana-skipper/pull/3

    Full Changelog: https://github.com/katanaml/katana-skipper/compare/v1.0.0...v1.1.0

    Source code(tar.gz)
    Source code(zip)
  • v1.0.0(Oct 9, 2021)

    First production release of Katana ML Skipper.

    Included:

    • Logger
    • Workflow
    • API async and sync
    • Services
    • Docker support
    • Kubernetes support
    • Tested on OCI Cloud

    Full Changelog: https://github.com/katanaml/katana-skipper/commits/v1.0.0

    Source code(tar.gz)
    Source code(zip)
Owner
Katana ML
Machine Learning for Business Automation
Katana ML
To-Be is a machine learning challenge on CodaLab Platform about Mortality Prediction

To-Be is a machine learning challenge on CodaLab Platform about Mortality Prediction. The challenge aims to adress the problems of medical imbalanced data classification.

Marwan Mashra 1 Jan 31, 2022
Tribuo - A Java machine learning library

Tribuo - A Java prediction library (v4.1) Tribuo is a machine learning library in Java that provides multi-class classification, regression, clusterin

Oracle 1.1k Dec 28, 2022
GAM timeseries modeling with auto-changepoint detection. Inspired by Facebook Prophet and implemented in PyMC3

pm-prophet Pymc3-based universal time series prediction and decomposition library (inspired by Facebook Prophet). However, while Faceook prophet is a

Luca Giacomel 314 Dec 25, 2022
Python package for concise, transparent, and accurate predictive modeling

Python package for concise, transparent, and accurate predictive modeling. All sklearn-compatible and easy to use. 📚 docs • 📖 demo notebooks Modern

Chandan Singh 983 Jan 01, 2023
Distributed Deep learning with Keras & Spark

Elephas: Distributed Deep Learning with Keras & Spark Elephas is an extension of Keras, which allows you to run distributed deep learning models at sc

Max Pumperla 1.6k Dec 29, 2022
[HELP REQUESTED] Generalized Additive Models in Python

pyGAM Generalized Additive Models in Python. Documentation Official pyGAM Documentation: Read the Docs Building interpretable models with Generalized

daniel servén 747 Jan 05, 2023
Stock Price Prediction Bank Jago Using Facebook Prophet Machine Learning & Python

Stock Price Prediction Bank Jago Using Facebook Prophet Machine Learning & Python Overview Bank Jago has attracted investors' attention since the end

Najibulloh Asror 3 Feb 10, 2022
A toolkit for making real world machine learning and data analysis applications in C++

dlib C++ library Dlib is a modern C++ toolkit containing machine learning algorithms and tools for creating complex software in C++ to solve real worl

Davis E. King 11.6k Jan 02, 2023
Evidently helps analyze machine learning models during validation or production monitoring

Evidently helps analyze machine learning models during validation or production monitoring. The tool generates interactive visual reports and JSON profiles from pandas DataFrame or csv files. Current

Evidently AI 3.1k Jan 07, 2023
A Multipurpose Library for Synthetic Time Series Generation in Python

TimeSynth Multipurpose Library for Synthetic Time Series Please cite as: J. R. Maat, A. Malali, and P. Protopapas, “TimeSynth: A Multipurpose Library

278 Dec 26, 2022
A model to predict steering torque fully end-to-end

torque_model The torque model is a spiritual successor to op-smart-torque, which was a project to train a neural network to control a car's steering f

Shane Smiskol 4 Jun 03, 2022
Covid-polygraph - a set of Machine Learning-driven fact-checking tools

Covid-polygraph, a set of Machine Learning-driven fact-checking tools that aim to address the issue of misleading information related to COVID-19.

1 Apr 22, 2022
DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective.

DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective. 10x Larger Models 10x Faster Trainin

Microsoft 8.4k Dec 30, 2022
Data from "Datamodels: Predicting Predictions with Training Data"

Data from "Datamodels: Predicting Predictions with Training Data" Here we provid

Madry Lab 51 Dec 09, 2022
TensorFlowOnSpark brings TensorFlow programs to Apache Spark clusters.

TensorFlowOnSpark TensorFlowOnSpark brings scalable deep learning to Apache Hadoop and Apache Spark clusters. By combining salient features from the T

Yahoo 3.8k Jan 04, 2023
Confidence intervals for scikit-learn forest algorithms

forest-confidence-interval: Confidence intervals for Forest algorithms Forest algorithms are powerful ensemble methods for classification and regressi

272 Dec 01, 2022
Lseng-iseng eksplor Machine Learning dengan menggunakan library Scikit-Learn

Kalo dengar istilah ML, biasanya rada ambigu. Soalnya punya beberapa kepanjangan, seperti Mobile Legend, Makan Lontong, Ma**ng L*v* dan lain-lain. Tapi pada repo ini membahas Machine Learning :)

Alfiyanto Kondolele 1 Apr 06, 2022
Retrieve annotated intron sequences and classify them as minor (U12-type) or major (U2-type)

(intron I nterrogator and C lassifier) intronIC is a program that can be used to classify intron sequences as minor (U12-type) or major (U2-type), usi

Graham Larue 4 Jul 26, 2022
Microsoft Machine Learning for Apache Spark

Microsoft Machine Learning for Apache Spark MMLSpark is an ecosystem of tools aimed towards expanding the distributed computing framework Apache Spark

Microsoft Azure 3.9k Dec 30, 2022
Tool for producing high quality forecasts for time series data that has multiple seasonality with linear or non-linear growth.

Prophet: Automatic Forecasting Procedure Prophet is a procedure for forecasting time series data based on an additive model where non-linear trends ar

Facebook 15.4k Jan 07, 2023