Data from "Datamodels: Predicting Predictions with Training Data"

Overview

Data from "Datamodels: Predicting Predictions with Training Data"

Here we provide the data used in the paper "Datamodels: Predicting Predictions with Training Data" (arXiv, Blog).

Note that all of the data below is stored on Amazon S3 using the “requester pays” option to avoid a blowup in our data transfer costs (we put estimated AWS costs below)---if you are on a budget and do not mind waiting a bit longer, please contact us at [email protected] and we can try to arrange a free (but slower) transfer.

Citation

To cite this data, please use the following BibTeX entry:

@inproceedings{ilyas2022datamodels,
  title = {Datamodels: Predicting Predictions from Training Data},
  author = {Andrew Ilyas and Sung Min Park and Logan Engstrom and Guillaume Leclerc and Aleksander Madry},
  booktitle = {ArXiv preprint arXiv:2202.00622},
  year = {2022}
}

Overview

We provide the data used in our paper to analyze two image classification datasets: CIFAR-10 and (a modified version of) FMoW.

For each dataset, the data consists of two parts:

  1. Training data for datamodeling, which consists of:
    • Training subsets or "training masks", which are the independent variables of the regression tasks; and
    • Model outputs (correct-class margins and logits), which are the dependent variables of the regression tasks.
  2. Datamodels estimated from this data using LASSO.

For each dataset, there are multiple versions of the data depending on the choice of the hyperparameter α, the subsampling fraction (this is the random fraction of training examples on which each model is trained; see Section 2 of our paper for more information).

Following table shows the number of models we trained and used for estimating datamodels (also see Table 1 in paper):

Subsampling α (%) CIFAR-10 FMoW
10 1,500,000 N/A
20 750,000 375,000
50 300,000 150,000
75 600,000 300,000

Training data

For each dataset and $\alpha$, we provide the following data:

# M is the number of models trained
/{DATASET}/data/train_masks_{PCT}pct.npy  # [M x N_train] boolean
/{DATASET}/data/test_margins_{PCT}pct.npy # [M x N_test] np.float16
/{DATASET}/data/test_margins_{PCT}pct.npy # [M x N_train] np.float16

(The files live in the Amazon S3 bucket madrylab-datamodels; we provide instructions for acces in the next section.)

Each row of the above matrices corresponds to one instance of model trained; each column corresponds to a training or test example. CIFAR-10 examples are organized in the default order; for FMoW, see here. For example, a train mask for CIFAR-10 has the shape [M x 50,000].

For CIFAR-10, we also provide the full logits for all ten classes:

/cifar/data/train_logits_{PCT}pct.npy  # [M x N_test x 10] np.float16
/cifar/data/test_logits_{PCT}pct.npy   # [M x N_test x 10] np.float16

Note that you can also compute the margins from these logits.

We include an addtional 10,000 models for each setting that we used for evaluation; the total number of models in each matrix is M as indicated in the above table plus 10,000.

Datamodels

All estimated datamodels for each split (train or test) are provided as a dictionary in a .pt file (load with torch.load):

/{DATASET}/datamodels/train_{PCT}pct.pt
/{DATASET}/datamodels/test_{PCT}pct.pt

Each dictionary contains:

  • weight: matrix of shape N_train x N, where N is either N_train or N_test depending on the group of target examples
  • bias: vector of length N, corresponding to biases for each datamodel
  • lam: vector of length N, regularization λ chosen by CV for each datamodel

Downloading

We make all of our data available via Amazon S3. Total sizes of the training data files are as follows:

Dataset, α (%) masks, margins (GB) logits (GB)
CIFAR-10, 10 245 1688
CIFAR-10, 20 123 849
CIFAR-10, 50 49 346
CIFAR-10, 75 98 682
FMoW, 20 25.4 -
FMoW, 50 10.6 -
FMoW, 75 21.2 -

Total sizes of datamodels data (the model weights) are 16.9 GB for CIFAR-10 and 0.75 GB for FMoW.

API

You can download them using the Amazon S3 CLI interface with the requester pays option as follows (replacing the fields {...} as appropriate):

aws s3api get-object --bucket madrylab-datamodels \
                     --key {DATASET}/data/{SPLIT}_{DATA_TYPE}_{PCT}.npy \
                     --request-payer requester \
                     [OUT_FILE]

For example, to retrieve the test set margins for CIFAR-10 models trained on 50% subsets, use:

aws s3api get-object --bucket madrylab-datamodels \
                     --key cifar/data/test_margins_50pct.npy \
                     --request-payer requester \
                     test_margins_50pct.npy

Pricing

The total data transfer fee (from AWS to internet) for all of the data is around $374 (= 4155 GB x 0.09 USD per GB).

If you only download everything except for the logits (which is sufficient to reproduce all of our analysis), the fee is around $53.

Loading data

The data matrices are in numpy array format (.npy). As some of these are quite large, you can read small segments without reading the entire file into memory by additionally specifying the mmap_mode argument in np.load:

X = np.load('train_masks_10pct.npy', mmap_mode='r')
Y = np.load('test_margins_10pct.npy', mmap_mode='r')
...
# Use segments, e.g, X[:100], as appropriate
# Run regress(X, Y[:]) using choice of estimation algorithm.

FMoW data

We use a customized version of the FMoW dataset from WILDS (derived from this original dataset) that restricts the year of the training set to 2012. Our code is adapted from here.

To use the dataset, first download WILDS using:

pip install wilds

(see here for more detailed instructions).

In our paper, we only use the in-distribution training and test splits in our analysis (the original version from WILDS also has out-of-distribution as well as validation splits). Our dataset splits can be constructed as follows and used like a PyTorch dataset:

from fmow import FMoWDataset

ds = FMoWDataset(root_dir='/mnt/nfs/datasets/wilds/',
                     split_scheme='time_after_2016')

transform_steps = [
    transforms.ToTensor(),
    transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ]
transform = transforms.Compose(transform_steps)

ds_train = ds.get_subset('train', transform=transform)
ds_test = ds.get_subset('id_test', transform=transform)

The columns of matrix data described above is ordered according to the default ordering of examples given by the above constructors.

Owner
Madry Lab
Towards a Principled Science of Deep Learning
Madry Lab
To design and implement the Identification of Iris Flower species using machine learning using Python and the tool Scikit-Learn.

To design and implement the Identification of Iris Flower species using machine learning using Python and the tool Scikit-Learn.

Astitva Veer Garg 1 Jan 11, 2022
Dragonfly is an open source python library for scalable Bayesian optimisation.

Dragonfly is an open source python library for scalable Bayesian optimisation. Bayesian optimisation is used for optimising black-box functions whose

744 Jan 02, 2023
Scalable, Portable and Distributed Gradient Boosting (GBDT, GBRT or GBM) Library, for Python, R, Java, Scala, C++ and more. Runs on single machine, Hadoop, Spark, Dask, Flink and DataFlow

eXtreme Gradient Boosting Community | Documentation | Resources | Contributors | Release Notes XGBoost is an optimized distributed gradient boosting l

Distributed (Deep) Machine Learning Community 23.6k Jan 03, 2023
Extreme Learning Machine implementation in Python

Python-ELM v0.3 --- ARCHIVED March 2021 --- This is an implementation of the Extreme Learning Machine [1][2] in Python, based on scikit-learn. From

David C. Lambert 511 Dec 20, 2022
Lseng-iseng eksplor Machine Learning dengan menggunakan library Scikit-Learn

Kalo dengar istilah ML, biasanya rada ambigu. Soalnya punya beberapa kepanjangan, seperti Mobile Legend, Makan Lontong, Ma**ng L*v* dan lain-lain. Tapi pada repo ini membahas Machine Learning :)

Alfiyanto Kondolele 1 Apr 06, 2022
This is an implementation of the proximal policy optimization algorithm for the C++ API of Pytorch

This is an implementation of the proximal policy optimization algorithm for the C++ API of Pytorch. It uses a simple TestEnvironment to test the algorithm

Martin Huber 59 Dec 09, 2022
Esse é o meu primeiro repo tratando de fim a fim, uma pipeline de dados abertos do governo brasileiro relacionado a compras de contrato e cronogramas anuais com spark, em pyspark e SQL!

Olá! Esse é o meu primeiro repo tratando de fim a fim, uma pipeline de dados abertos do governo brasileiro relacionado a compras de contrato e cronogr

Henrique de Paula 10 Apr 04, 2022
cuML - RAPIDS Machine Learning Library

cuML - GPU Machine Learning Algorithms cuML is a suite of libraries that implement machine learning algorithms and mathematical primitives functions t

RAPIDS 3.1k Dec 28, 2022
Open source time series library for Python

PyFlux PyFlux is an open source time series library for Python. The library has a good array of modern time series models, as well as a flexible array

Ross Taylor 2k Jan 02, 2023
A Python toolbox to churn out organic alkalinity calculations with minimal brain engagement.

Organic Alkalinity Sausage Machine A Python toolbox to churn out organic alkalinity calculations with minimal brain engagement. Getting started To mak

Charles Turner 1 Feb 01, 2022
The project's goal is to show a real world application of image segmentation using k means algorithm

The project's goal is to show a real world application of image segmentation using k means algorithm

2 Jan 22, 2022
Python ML pipeline that showcases mltrace functionality.

mltrace tutorial Date: October 2021 This tutorial builds a training and testing pipeline for a toy ML prediction problem: to predict whether a passeng

Log Labs 28 Nov 09, 2022
Machine learning model evaluation made easy: plots, tables, HTML reports, experiment tracking and Jupyter notebook analysis.

sklearn-evaluation Machine learning model evaluation made easy: plots, tables, HTML reports, experiment tracking, and Jupyter notebook analysis. Suppo

Eduardo Blancas 354 Dec 31, 2022
Datetimes for Humans™

Maya: Datetimes for Humans™ Datetimes are very frustrating to work with in Python, especially when dealing with different locales on different systems

Timo Furrer 3.4k Dec 28, 2022
database for artificial intelligence/machine learning data

AIDB v0.0.1 database for artificial intelligence/machine learning data Overview aidb is a database designed for large dataset for machine learning pro

Aarush Gupta 1 Oct 24, 2021
A machine learning toolkit dedicated to time-series data

tslearn The machine learning toolkit for time series analysis in Python Section Description Installation Installing the dependencies and tslearn Getti

2.3k Jan 05, 2023
Getting Profit and Loss Make Easy From Binance

Getting Profit and Loss Make Easy From Binance I have been in Binance Automated Trading for some time and have generated a lot of transaction records,

17 Dec 21, 2022
Forecasting prices using Facebook/Meta's Prophet model

CryptoForecasting using Machine and Deep learning (Part 1) CryptoForecasting using Machine Learning The main aspect of predicting the stock-related da

1 Nov 27, 2021
A Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming.

Master status: Development status: Package information: TPOT stands for Tree-based Pipeline Optimization Tool. Consider TPOT your Data Science Assista

Epistasis Lab at UPenn 8.9k Jan 09, 2023