GAM timeseries modeling with auto-changepoint detection. Inspired by Facebook Prophet and implemented in PyMC3

Overview

pm-prophet

Logo

Pymc3-based universal time series prediction and decomposition library (inspired by Facebook Prophet). However, while Faceook prophet is a well-defined model, pm-prophet allows for total flexibility in the choice of priors and thus is potentially suited for a wider class of estimation problems.

⚠️ Only supports Python 3

Table of Contents

Installing pm-prophet

PM-Prophet installation is straightforward using pip: pip install pmprophet

Note that the key dependency of pm-prophet is PyMc3 a library that depends on Theano.

Key Features

  • Nowcasting & Forecasting
  • Intercept, growth
  • Regressors
  • Holidays
  • Additive & multiplicative seasonality
  • Fitting and plotting
  • Custom choice of priors (not in Facebook's prophet original model)
  • Changepoints in growth
  • Automatic changepoint location detection (not in Facebook's prophet original model)
  • Fitting with NUTS/AVDI/Metropolis

Experimental warning ⚠️

  • Note that automatic changepoint detection is experimental

Differences with Prophet:

  • Saturating growth is not implemented
  • Uncertainty estimation is different
  • All components (including seasonality) need to be explicitly added to the model
  • By design pm-prophet places a big emphasis on posteriors and uncertainty estimates, and therefore it won't use MAP for it's estimates.
  • While Faceook prophet is a well-defined fixed model, pm-prophet allows for total flexibility in the choice of priors and thus is potentially suited for a wider class of estimation problems

Peyton Manning example

Predicting the Peyton Manning timeseries:

import pandas as pd
from pmprophet.model import PMProphet, Sampler

df = pd.read_csv("examples/example_wp_log_peyton_manning.csv")
df = df.head(180)

# Fit both growth and intercept
m = PMProphet(df, growth=True, intercept=True, n_changepoints=25, changepoints_prior_scale=.01, name='model')

# Add monthly seasonality (order: 3)
m.add_seasonality(seasonality=30, fourier_order=3)

# Add weekly seasonality (order: 3)
m.add_seasonality(seasonality=7, fourier_order=3)

# Fit the model (using NUTS)
m.fit(method=Sampler.NUTS)

ddf = m.predict(60, alpha=0.2, include_history=True, plot=True)
m.plot_components(
    intercept=False,
)

Model Seasonality-7 Seasonality-30 Growth Change Points

Custom Priors

One of the main reason why PMProphet was built is to allow custom priors for the modeling.

The default priors are:

Variable Prior Parameters
regressors Laplace loc:0, scale:2.5
holidays Laplace loc:0, scale:2.5
seasonality Laplace loc:0, scale:0.05
growth Laplace loc:0, scale:10
changepoints Laplace loc:0, scale:2.5
intercept Normal loc:y.mean, scale: 2 * y.std
sigma Half Cauchy tau:10

But you can change model priors by inspecting and modifying the distributions stored in

m.priors

which is a dictionary of {prior: pymc3-distribution}.

In the example below we will model an additive time-series by imposing a "positive coefficients" constraint by using an Exponential distribution instead of a Laplacian distribution for the regressors.

import pandas as pd
import numpy as np
import pymc3 as pm
from pmprophet.model import PMProphet, Sampler

n_timesteps = 100
n_regressors = 20

regressors = np.random.normal(size=(n_timesteps, n_regressors))
coeffs = np.random.exponential(size=n_regressors) + np.random.normal(size=n_regressors)
# Note that min(coeffs) could be negative due to the white noise

regressors_names = [str(i) for i in range(n_regressors)]

df = pd.DataFrame()
df['y'] = np.dot(regressors, coeffs)
df['ds'] = pd.date_range('2017-01-01', periods=n_timesteps)
for idx, regressor in enumerate(regressors_names):
    df[regressor] = regressors[:, idx]

m = PMProphet(df, growth=False, intercept=False, n_changepoints=0, name='model')

with m.model:
    # Remember to suffix _<model-name> to the custom priors
    m.priors['regressors'] = pm.Exponential('regressors_%s' % m.name, 1, shape=n_regressors)

for regressor in regressors_names:
    m.add_regressor(regressor)

m.fit(
    draws=10 ** 4,
    method=Sampler.NUTS,
)
m.plot_components()

Regressors

Automatic changepoint detection ( ⚠️ experimental)

Pm-prophet is equipped with a non-parametric truncated Dirichlet Process allowing it to automatically detect changepoints in the trend.

To enable it simply initialize the model with auto_changepoints=True as follows:

from pmprophet.model import PMProphet, Sampler
import pandas as pd

df = pd.read_csv("examples/example_wp_log_peyton_manning.csv")
df = df.head(180)
m = PMProphet(df, auto_changepoints=True, growth=True, intercept=True, name='model')
m.fit(method=Sampler.METROPOLIS, draws=2000)
m.predict(60, alpha=0.2, include_history=True, plot=True)
m.plot_components(
    intercept=False,
)

Where n_changepoints is interpreted as the truncation point for the Dirichlet Process.

Pm-prophet will then decide which changepoint values make sense and add a custom weight to them. A call to plot_components() will reveal the changepoint map:

Regressors

A few caveats exist:

  • It's slow to fit since it's a non-parametric model
  • For best results use NUTS as method
  • It will likely require more than the default number of draws to converge
Owner
Luca Giacomel
Luca Giacomel
A simple application that calculates the probability distribution of a normal distribution

probability-density-function General info An application that calculates the probability density and cumulative distribution of a normal distribution

1 Oct 25, 2022
LILLIE: Information Extraction and Database Integration Using Linguistics and Learning-Based Algorithms

LILLIE: Information Extraction and Database Integration Using Linguistics and Learning-Based Algorithms Based on the work by Smith et al. (2021) Query

5 Aug 06, 2022
Little Ball of Fur - A graph sampling extension library for NetworKit and NetworkX (CIKM 2020)

Little Ball of Fur is a graph sampling extension library for Python. Please look at the Documentation, relevant Paper, Promo video and External Resour

Benedek Rozemberczki 619 Dec 14, 2022
ParaMonte is a serial/parallel library of Monte Carlo routines for sampling mathematical objective functions of arbitrary-dimensions

ParaMonte is a serial/parallel library of Monte Carlo routines for sampling mathematical objective functions of arbitrary-dimensions, in particular, the posterior distributions of Bayesian models in

Computational Data Science Lab 182 Dec 31, 2022
Toolkit for building machine learning models that generalize to unseen domains and are robust to privacy and other attacks.

Toolkit for Building Robust ML models that generalize to unseen domains (RobustDG) Divyat Mahajan, Shruti Tople, Amit Sharma Privacy & Causal Learning

Microsoft 149 Jan 06, 2023
Distributed Evolutionary Algorithms in Python

DEAP DEAP is a novel evolutionary computation framework for rapid prototyping and testing of ideas. It seeks to make algorithms explicit and data stru

Distributed Evolutionary Algorithms in Python 4.9k Jan 05, 2023
Warren - Stock Price Predictor

Web app to predict closing stock prices in real time using Facebook's Prophet time series algorithm with a multi-variate, single-step time series forecasting strategy.

Kumar Nityan Suman 153 Jan 03, 2023
Continuously evaluated, functional, incremental, time-series forecasting

timemachines Autonomous, univariate, k-step ahead time-series forecasting functions assigned Elo ratings You can: Use some of the functionality of a s

Peter Cotton 343 Jan 04, 2023
Can a machine learning project be implemented to estimate the salaries of baseball players whose salary information and career statistics for 1986 are shared?

END TO END MACHINE LEARNING PROJECT ON HITTERS DATASET Can a machine learning project be implemented to estimate the salaries of baseball players whos

Pinar Oner 7 Dec 18, 2021
scikit-learn is a python module for machine learning built on top of numpy / scipy

About scikit-learn is a python module for machine learning built on top of numpy / scipy. The purpose of the scikit-learn-tutorial subproject is to le

Gael Varoquaux 122 Dec 12, 2022
Made in collaboration with Chris George for Art + ML Spring 2019.

Deepdream Eyes Made in collaboration with Chris George for Art + ML Spring 2019.

Francisco Cabrera 1 Jan 12, 2022
Bayesian optimization based on Gaussian processes (BO-GP) for CFD simulations.

BO-GP Bayesian optimization based on Gaussian processes (BO-GP) for CFD simulations. The BO-GP codes are developed using GPy and GPyOpt. The optimizer

KTH Mechanics 8 Mar 31, 2022
Compare MLOps Platforms. Breakdowns of SageMaker, VertexAI, AzureML, Dataiku, Databricks, h2o, kubeflow, mlflow...

Compare MLOps Platforms. Breakdowns of SageMaker, VertexAI, AzureML, Dataiku, Databricks, h2o, kubeflow, mlflow...

Thoughtworks 318 Jan 02, 2023
Implementation of linesearch Optimization Algorithms in Python

Nonlinear Optimization Algorithms During my time as Scientific Assistant at the Karlsruhe Institute of Technology (Germany) I implemented various Opti

Paul 3 Dec 06, 2022
Transform ML models into a native code with zero dependencies

m2cgen (Model 2 Code Generator) - is a lightweight library which provides an easy way to transpile trained statistical models into a native code

Bayes' Witnesses 2.3k Jan 03, 2023
Price forecasting of SGB and IRFC Bonds and comparing there returns

Project_Bonds Project Title : Price forecasting of SGB and IRFC Bonds and comparing there returns. Introduction of the Project The 2008-09 global fina

Tishya S 1 Oct 28, 2021
A toolkit for geo ML data processing and model evaluation (fork of solaris)

An open source ML toolkit for overhead imagery. This is a beta version of lunular which may continue to develop. Please report any bugs through issues

Ryan Avery 4 Nov 04, 2021
Avocado hass time series vs predict price

AVOCADO HASS TIME SERIES VÀ PREDICT PRICE Trước khi vào Heroku muốn giao diện đẹp mọi người chuyển giúp mình theo hình bên dưới https://avocado-hass.h

hieulmsc 3 Dec 18, 2021
Kubeflow is a machine learning (ML) toolkit that is dedicated to making deployments of ML workflows on Kubernetes simple, portable, and scalable.

SDK: Overview of the Kubeflow pipelines service Kubeflow is a machine learning (ML) toolkit that is dedicated to making deployments of ML workflows on

Kubeflow 3.1k Jan 06, 2023
PennyLane is a cross-platform Python library for differentiable programming of quantum computers

PennyLane is a cross-platform Python library for differentiable programming of quantum computers. Train a quantum computer the same way as a neural ne

PennyLaneAI 1.6k Jan 01, 2023