Backprop makes it simple to use, finetune, and deploy state-of-the-art ML models.

Overview

Backprop

Backprop makes it simple to use, finetune, and deploy state-of-the-art ML models.

Solve a variety of tasks with pre-trained models or finetune them in one line for your own tasks.

Out of the box tasks you can solve with Backprop:

  • Conversational question answering in English
  • Text Classification in 100+ languages
  • Image Classification
  • Text Vectorisation in 50+ languages
  • Image Vectorisation
  • Summarisation in English
  • Emotion detection in English
  • Text Generation

For more specific use cases, you can adapt a task with little data and a single line of code via finetuning.

Getting started Installation, few minute introduction
💡 Examples Finetuning and usage examples
📙 Docs In-depth documentation about task inference and finetuning
⚙️ Models Overview of available models

Getting started

Installation

Install Backprop via PyPi:

pip install backprop

Basic task inference

Tasks act as interfaces that let you easily use a variety of supported models.

import backprop

context = "Take a look at the examples folder to see use cases!"

qa = backprop.QA()

# Start building!
answer = qa("Where can I see what to build?", context)

print(answer)
# Prints
"the examples folder"

You can run all tasks and models on your own machine, or in production with our inference API, simply by specifying your api_key.

See how to use all available tasks.

Basic finetuning and uploading

Each task implements finetuning that lets you adapt a model for your specific use case in a single line of code.

A finetuned model is easy to upload to production, letting you focus on building great applications.

import backprop

tg = backprop.TextGeneration("t5-small")

# Any text works as training data
inp = ["I really liked the service I received!", "Meh, it was not impressive."]
out = ["positive", "negative"]

# Finetune with a single line of code
tg.finetune({"input_text": inp, "output_text": out})

# Use your trained model
prediction = tg("I enjoyed it!")

print(prediction)
# Prints
"positive"

# Upload to Backprop for production ready inference
# Describe your model
name = "t5-sentiment"
description = "Predicts positive and negative sentiment"

tg.upload(name=name, description=description, api_key="abc")

See finetuning for other tasks.

Why Backprop?

  1. No experience needed

    • Entrance to practical AI should be simple
    • Get state-of-the-art performance in your task without being an expert
  2. Data is a bottleneck

    • Solve real world tasks without any data
    • With transfer learning, even a small amount of data can adapt a task to your niche requirements
  3. There are an overwhelming amount of models

    • We offer a curated selection of the best open-source models and make them simple to use
    • A few general models can accomplish more with less optimisation
  4. Deploying models cost effectively is hard work

    • If our models suit your use case, no deployment is needed: just call our API
    • Adapt and deploy your own model with just a few lines of code
    • Our API scales, is always available, and you only pay for usage

Examples

Documentation

Check out our docs for in-depth task inference and finetuning.

Model Hub

Curated list of state-of-the-art models.

Demos

Zero-shot image classification with CLIP.

Credits

Backprop relies on many great libraries to work, most notably:

Feedback

Found a bug or have ideas for new tasks and models? Open an issue.

Owner
Backprop
Making machine learning easy for every developer.
Backprop
A statistical library designed to fill the void in Python's time series analysis capabilities, including the equivalent of R's auto.arima function.

pmdarima Pmdarima (originally pyramid-arima, for the anagram of 'py' + 'arima') is a statistical library designed to fill the void in Python's time se

alkaline-ml 1.3k Jan 06, 2023
Educational python for Neural Networks, written in pure Python/NumPy.

Educational python for Neural Networks, written in pure Python/NumPy.

127 Oct 27, 2022
Probabilistic time series modeling in Python

GluonTS - Probabilistic Time Series Modeling in Python GluonTS is a Python toolkit for probabilistic time series modeling, built around Apache MXNet (

Amazon Web Services - Labs 3.3k Jan 03, 2023
ParaMonte is a serial/parallel library of Monte Carlo routines for sampling mathematical objective functions of arbitrary-dimensions

ParaMonte is a serial/parallel library of Monte Carlo routines for sampling mathematical objective functions of arbitrary-dimensions, in particular, the posterior distributions of Bayesian models in

Computational Data Science Lab 182 Dec 31, 2022
Predicting Baseball Metric Clusters: Clustering Application in Python Using scikit-learn

Clustering Clustering Application in Python Using scikit-learn This repository contains the prediction of baseball metric clusters using MLB Statcast

Tom Weichle 2 Apr 18, 2022
Simple, fast, and parallelized symbolic regression in Python/Julia via regularized evolution and simulated annealing

Parallelized symbolic regression built on Julia, and interfaced by Python. Uses regularized evolution, simulated annealing, and gradient-free optimization.

Miles Cranmer 924 Jan 03, 2023
A Python package to preprocess time series

Disclaimer: This package is WIP. Do not take any APIs for granted. tspreprocess Time series can contain noise, may be sampled under a non fitting rate

Maximilian Christ 57 Dec 17, 2022
a distributed deep learning platform

Apache SINGA Distributed deep learning system http://singa.apache.org Quick Start Installation Examples Issues JIRA tickets Code Analysis: Mailing Lis

The Apache Software Foundation 2.7k Jan 05, 2023
Production Grade Machine Learning Service

This project is made to help you scale from a basic Machine Learning project for research purposes to a production grade Machine Learning web service

Abdullah Zaiter 10 Apr 04, 2022
DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective.

DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective. 10x Larger Models 10x Faster Trainin

Microsoft 8.4k Dec 30, 2022
hgboost - Hyperoptimized Gradient Boosting

hgboost is short for Hyperoptimized Gradient Boosting and is a python package for hyperparameter optimization for xgboost, catboost and lightboost using cross-validation, and evaluating the results o

Erdogan Taskesen 34 Jan 03, 2023
Lightning ⚡️ fast forecasting with statistical and econometric models.

Nixtla Statistical ⚡️ Forecast Lightning fast forecasting with statistical and econometric models StatsForecast offers a collection of widely used uni

Nixtla 2.1k Dec 29, 2022
Predict the income for each percentile of the population (Python) - FRENCH

05.income-prediction Predict the income for each percentile of the population (Python) - FRENCH Effectuez une prédiction de revenus Prérequis Pour ce

1 Feb 13, 2022
The Fuzzy Labs guide to the universe of open source MLOps

Open Source MLOps This is the Fuzzy Labs guide to the universe of free and open source MLOps tools. Contents What is MLOps, anyway? Data version contr

Fuzzy Labs 352 Dec 29, 2022
Houseprices - Predict sales prices and practice feature engineering, RFs, and gradient boosting

House Prices - Advanced Regression Techniques Predicting House Prices with Machine Learning This project is build to enhance my knowledge about machin

1 Jan 01, 2022
Conducted ANOVA and Logistic regression analysis using matplot library to visualize the result.

Intro-to-Data-Science Conducted ANOVA and Logistic regression analysis. Project ANOVA The main aim of this project is to perform One-Way ANOVA analysi

Chris Yuan 1 Feb 06, 2022
Penguins species predictor app is used to classify penguins species created using python's scikit-learn, fastapi, numpy and joblib packages.

Penguins Classification App Penguins species predictor app is used to classify penguins species using their island, sex, bill length (mm), bill depth

Siva Prakash 3 Apr 05, 2022
A library of sklearn compatible categorical variable encoders

Categorical Encoding Methods A set of scikit-learn-style transformers for encoding categorical variables into numeric by means of different techniques

2.1k Jan 07, 2023
🌊 River is a Python library for online machine learning.

River is a Python library for online machine learning. It is the result of a merger between creme and scikit-multiflow. River's ambition is to be the go-to library for doing machine learning on strea

OnlineML 4k Jan 03, 2023
Cool Python features for machine learning that I used to be too afraid to use. Will be updated as I have more time / learn more.

python-is-cool A gentle guide to the Python features that I didn't know existed or was too afraid to use. This will be updated as I learn more and bec

Chip Huyen 3.3k Jan 05, 2023