Bonsai: Gradient Boosted Trees + Bayesian Optimization

Overview

Bonsai: Gradient Boosted Trees + Bayesian Optimization

Bonsai is a wrapper for the XGBoost and Catboost model training pipelines that leverages Bayesian optimization for computationally efficient hyperparameter tuning.

Despite being a very small package, it has access to nearly all of the configurable parameters in XGBoost and CatBoost as well as the BayesianOptimization package allowing users to specify unique objectives, metrics, parameter search ranges, and search policies. This is made possible thanks to the strong similarities between both libraries.

$ pip install bonsai-tree

References/Dependencies:

Why use Bonsai?

Grid search and random search are the most commonly used algorithms for exploring the hyperparameter space for a wide range of machine learning models. While effective for optimizing over low dimensional hyperparameter spaces (ex: few regularization terms), these methods do not scale well to models with a large number of hyperparameters such as gradient boosted trees.

Bayesian optimization on the other hand dynamically samples from the hyperparameter space with the goal of minimizing uncertaintly about the underlying objective function. For the case of model optimization, this consists of iteratively building a prior distribution of functions over the hyperparameter space and sampling with the goal of minimizing the posterior variance of the loss surface (via Gaussian Processes).

Model Configuration

Since Bonsai is simply a wrapper for both XGBoost and CatBoost, the model_params dict is synonymous with the params argument for both catboost.fit() and xgboost.fit(). Additionally, you must encode your categorical features as usual depending on which library you are using (XGB: One-Hot, CB: Label).

Below is a simple example of binary classification using CatBoost:

# label encoded training data
X = train.drop(target, axis = 1)
y = train[target]

# same args as catboost.train(...)
model_params = dict(objective = 'Logloss', verbose = False)

# same args as catboost.cv(...)
cv_params = dict(nfold = 5)

The pbounds dict as seen below specifies the hyperparameter bounds over which the optimizer will search. Additionally, the opt_config dictionary is for configuring the optimizer itself. Refer to the BayesianOptimization documentation to learn more.

# defining parameter search ranges
pbounds = dict(
  eta = (0.15, 0.4), 
  n_estimators = (200,2000), 
  max_depth = (4, 8)
)

# 10 warm up samples + 10 optimizing steps
n_iter, init_points= 10, 10

# to learn more about customizing your search policy:
# BayesianOptimization/examples/exploitation_vs_exploration.ipynb
opt_config = dict(acq = 'ei', xi = 1e-2)

Tuning and Prediction

All that is left is to initialize and optimize.

from bonsai.tune import CB_Tuner

# note that 'cats' is a list of categorical feature names
tuner = CB_Tuner(X, y, cats, model_params, cv_params, pbounds)
tuner.optimize(n_iter, init_points, opt_config, bounds_transformer)

After the optimal parameters are found, the model is trained and stored internally giving full access to the CatBoost model.

test_pool = catboost.Pool(test, cat_features = cats)
preds = tuner.model.predict(test_pool, prediction_type = 'Probability')

Bonsai also comes with a parallel coordinates plotting functionality allowing users to further narrow down their parameter search ranges as needed.

from bonsai.utils import parallel_coordinates

# DataFrame with hyperparams and observed loss
results = tuner.opt_results
parallel_coordinates(results)

Owner
Landon Buechner
As we all know the BGMI Loot Crate comes with so many resources for the gamers, this ML Crate will be the hub of various ML projects which will be the resources for the ML enthusiasts! Open Source Program: SWOC 2021 and JWOC 2022.

Machine Learning Loot Crate 💻 🧰 🔴 Welcome contributors! As we all know the BGMI Loot Crate comes with so many resources for the gamers, this ML Cra

Abhishek Sharma 89 Dec 28, 2022
ETNA is an easy-to-use time series forecasting framework.

ETNA is an easy-to-use time series forecasting framework. It includes built in toolkits for time series preprocessing, feature generation, a variety of predictive models with unified interface - from

Tinkoff.AI 674 Jan 07, 2023
Scikit-Learn useful pre-defined Pipelines Hub

Scikit-Pipes Scikit-Learn useful pre-defined Pipelines Hub Usage: Install scikit-pipes It's advised to install sklearn-genetic using a virtual env, in

Rodrigo Arenas 1 Apr 26, 2022
Library of Stan Models for Survival Analysis

survivalstan: Survival Models in Stan author: Jacki Novik Overview Library of Stan Models for Survival Analysis Features: Variety of standard survival

Hammer Lab 122 Jan 06, 2023
A statistical library designed to fill the void in Python's time series analysis capabilities, including the equivalent of R's auto.arima function.

pmdarima Pmdarima (originally pyramid-arima, for the anagram of 'py' + 'arima') is a statistical library designed to fill the void in Python's time se

alkaline-ml 1.3k Dec 22, 2022
QML: A Python Toolkit for Quantum Machine Learning

QML is a Python2/3-compatible toolkit for representation learning of properties of molecules and solids.

176 Dec 09, 2022
MLBox is a powerful Automated Machine Learning python library.

MLBox is a powerful Automated Machine Learning python library. It provides the following features: Fast reading and distributed data preprocessing/cle

Axel 1.4k Jan 06, 2023
Bottleneck a collection of fast, NaN-aware NumPy array functions written in C.

Bottleneck Bottleneck is a collection of fast, NaN-aware NumPy array functions written in C. As one example, to check if a np.array has any NaNs using

Python for Data 835 Dec 27, 2022
A Python toolkit for rule-based/unsupervised anomaly detection in time series

Anomaly Detection Toolkit (ADTK) Anomaly Detection Toolkit (ADTK) is a Python package for unsupervised / rule-based time series anomaly detection. As

Arundo Analytics 888 Dec 30, 2022
A fast, scalable, high performance Gradient Boosting on Decision Trees library, used for ranking, classification, regression and other machine learning tasks for Python, R, Java, C++. Supports computation on CPU and GPU.

Website | Documentation | Tutorials | Installation | Release Notes CatBoost is a machine learning method based on gradient boosting over decision tree

CatBoost 6.9k Jan 05, 2023
A visual dataflow programming language for sklearn

Persimmon What is it? Persimmon is a visual dataflow language for creating sklearn pipelines. It represents functions as blocks, inputs and outputs ar

Álvaro Bermejo 194 Jan 04, 2023
distfit - Probability density fitting

Python package for probability density function fitting of univariate distributions of non-censored data

Erdogan Taskesen 187 Dec 30, 2022
Learn how to responsibly deliver value with ML.

Made With ML Applied ML · MLOps · Production Join 30K+ developers in learning how to responsibly deliver value with ML. 🔥 Among the top MLOps reposit

Goku Mohandas 32k Dec 30, 2022
Client - 🔥 A tool for visualizing and tracking your machine learning experiments

Weights and Biases Use W&B to build better models faster. Track and visualize all the pieces of your machine learning pipeline, from datasets to produ

Weights & Biases 5.2k Jan 03, 2023
K-means clustering is a method used for clustering analysis, especially in data mining and statistics.

K Means Algorithm What is K Means This algorithm is an iterative algorithm that partitions the dataset according to their features into K number of pr

1 Nov 01, 2021
This jupyter notebook project was completed by me and my friend using the dataset from Kaggle

ARM This jupyter notebook project was completed by me and my friend using the dataset from Kaggle. The world Happiness 2017, which ranks 155 countries

1 Jan 23, 2022
Polyglot Machine Learning example for scraping similar news articles.

Polyglot Machine Learning example for scraping similar news articles In this example, we will see how we can work with Machine Learning applications w

MetaCall 15 Mar 28, 2022
Using Logistic Regression and classifiers of the dataset to produce an accurate recall, f-1 and precision score

Using Logistic Regression and classifiers of the dataset to produce an accurate recall, f-1 and precision score

Thines Kumar 1 Jan 31, 2022
Factorization machines in python

Factorization Machines in Python This is a python implementation of Factorization Machines [1]. This uses stochastic gradient descent with adaptive re

Corey Lynch 892 Jan 03, 2023
MLFlow in a Dockercontainer based on Azurite and Postgres

mlflow-azurite-postgres docker This is a MLFLow image which works with a postgres DB and a local Azure Blob Storage Instance (Azurite). This image is

2 May 29, 2022