Bonsai: Gradient Boosted Trees + Bayesian Optimization

Overview

Bonsai: Gradient Boosted Trees + Bayesian Optimization

Bonsai is a wrapper for the XGBoost and Catboost model training pipelines that leverages Bayesian optimization for computationally efficient hyperparameter tuning.

Despite being a very small package, it has access to nearly all of the configurable parameters in XGBoost and CatBoost as well as the BayesianOptimization package allowing users to specify unique objectives, metrics, parameter search ranges, and search policies. This is made possible thanks to the strong similarities between both libraries.

$ pip install bonsai-tree

References/Dependencies:

Why use Bonsai?

Grid search and random search are the most commonly used algorithms for exploring the hyperparameter space for a wide range of machine learning models. While effective for optimizing over low dimensional hyperparameter spaces (ex: few regularization terms), these methods do not scale well to models with a large number of hyperparameters such as gradient boosted trees.

Bayesian optimization on the other hand dynamically samples from the hyperparameter space with the goal of minimizing uncertaintly about the underlying objective function. For the case of model optimization, this consists of iteratively building a prior distribution of functions over the hyperparameter space and sampling with the goal of minimizing the posterior variance of the loss surface (via Gaussian Processes).

Model Configuration

Since Bonsai is simply a wrapper for both XGBoost and CatBoost, the model_params dict is synonymous with the params argument for both catboost.fit() and xgboost.fit(). Additionally, you must encode your categorical features as usual depending on which library you are using (XGB: One-Hot, CB: Label).

Below is a simple example of binary classification using CatBoost:

# label encoded training data
X = train.drop(target, axis = 1)
y = train[target]

# same args as catboost.train(...)
model_params = dict(objective = 'Logloss', verbose = False)

# same args as catboost.cv(...)
cv_params = dict(nfold = 5)

The pbounds dict as seen below specifies the hyperparameter bounds over which the optimizer will search. Additionally, the opt_config dictionary is for configuring the optimizer itself. Refer to the BayesianOptimization documentation to learn more.

# defining parameter search ranges
pbounds = dict(
  eta = (0.15, 0.4), 
  n_estimators = (200,2000), 
  max_depth = (4, 8)
)

# 10 warm up samples + 10 optimizing steps
n_iter, init_points= 10, 10

# to learn more about customizing your search policy:
# BayesianOptimization/examples/exploitation_vs_exploration.ipynb
opt_config = dict(acq = 'ei', xi = 1e-2)

Tuning and Prediction

All that is left is to initialize and optimize.

from bonsai.tune import CB_Tuner

# note that 'cats' is a list of categorical feature names
tuner = CB_Tuner(X, y, cats, model_params, cv_params, pbounds)
tuner.optimize(n_iter, init_points, opt_config, bounds_transformer)

After the optimal parameters are found, the model is trained and stored internally giving full access to the CatBoost model.

test_pool = catboost.Pool(test, cat_features = cats)
preds = tuner.model.predict(test_pool, prediction_type = 'Probability')

Bonsai also comes with a parallel coordinates plotting functionality allowing users to further narrow down their parameter search ranges as needed.

from bonsai.utils import parallel_coordinates

# DataFrame with hyperparams and observed loss
results = tuner.opt_results
parallel_coordinates(results)

Owner
Landon Buechner
Both social media sentiment and stock market data are crucial for stock price prediction

Relating-Social-Media-to-Stock-Movement-Public - We explore the application of Machine Learning for predicting the return of the stock by using the information of stock returns. A trading strategy ba

Vishal Singh Parmar 15 Oct 29, 2022
K-Means clusternig example with Python and Scikit-learn

Unsupervised-Machine-Learning Flat Clustering K-Means clusternig example with Python and Scikit-learn Flat clustering Clustering algorithms group a se

Emin 1 Dec 13, 2021
ETNA – time series forecasting framework

ETNA Time Series Library Predict your time series the easiest way Homepage | Documentation | Tutorials | Contribution Guide | Release Notes ETNA is an

Tinkoff.AI 675 Jan 08, 2023
This is my implementation on the K-nearest neighbors algorithm from scratch using Python

K Nearest Neighbors (KNN) algorithm In this Machine Learning world, there are various algorithms designed for classification problems such as Logistic

sonny1902 1 Jan 08, 2022
A Python package for time series classification

pyts: a Python package for time series classification pyts is a Python package for time series classification. It aims to make time series classificat

Johann Faouzi 1.4k Jan 01, 2023
Hypernets: A General Automated Machine Learning framework to simplify the development of End-to-end AutoML toolkits in specific domains.

A General Automated Machine Learning framework to simplify the development of End-to-end AutoML toolkits in specific domains.

DataCanvas 216 Dec 23, 2022
Educational python for Neural Networks, written in pure Python/NumPy.

Educational python for Neural Networks, written in pure Python/NumPy.

127 Oct 27, 2022
决策树分类与回归模型的实现和可视化

DecisionTree 决策树分类与回归模型,以及可视化 DecisionTree ID3 C4.5 CART 分类 回归 决策树绘制 分类树 回归树 调参 剪枝 ID3 ID3决策树是最朴素的决策树分类器: 无剪枝 只支持离散属性 采用信息增益准则 在data.py中,我们记录了一个小的西瓜数据

Welt Xing 10 Oct 22, 2022
Machine Learning e Data Science com Python

Machine Learning e Data Science com Python Arquivos do curso de Data Science e Machine Learning com Python na Udemy, cliqe aqui para acessá-lo. O prin

Renan Barbosa 1 Jan 27, 2022
BigDL: Distributed Deep Learning Framework for Apache Spark

BigDL: Distributed Deep Learning on Apache Spark What is BigDL? BigDL is a distributed deep learning library for Apache Spark; with BigDL, users can w

4.1k Jan 09, 2023
This is the code repository for Interpretable Machine Learning with Python, published by Packt.

Interpretable Machine Learning with Python, published by Packt

Packt 299 Jan 02, 2023
Decision tree is the most powerful and popular tool for classification and prediction

Diabetes Prediction Using Decision Tree Introduction Decision tree is the most powerful and popular tool for classification and prediction. A Decision

Arjun U 1 Jan 23, 2022
Toolkit for building machine learning models that generalize to unseen domains and are robust to privacy and other attacks.

Toolkit for Building Robust ML models that generalize to unseen domains (RobustDG) Divyat Mahajan, Shruti Tople, Amit Sharma Privacy & Causal Learning

Microsoft 149 Jan 06, 2023
A modular active learning framework for Python

Modular Active Learning framework for Python3 Page contents Introduction Active learning from bird's-eye view modAL in action From zero to one in a fe

modAL 1.9k Dec 31, 2022
This is an auto-ML tool specialized in detecting of outliers

Auto-ML tool specialized in detecting of outliers Description This tool will allows you, with a Dash visualization, to compare 10 models of machine le

1 Nov 03, 2021
2021 Machine Learning Security Evasion Competition

2021 Machine Learning Security Evasion Competition This repository contains code samples for the 2021 Machine Learning Security Evasion Competition. P

Fabrício Ceschin 8 May 01, 2022
Iris species predictor app is used to classify iris species created using python's scikit-learn, fastapi, numpy and joblib packages.

Iris Species Predictor Iris species predictor app is used to classify iris species using their sepal length, sepal width, petal length and petal width

Siva Prakash 5 Apr 05, 2022
Formulae is a Python library that implements Wilkinson's formulas for mixed-effects models.

formulae formulae is a Python library that implements Wilkinson's formulas for mixed-effects models. The main difference with other implementations li

34 Dec 21, 2022
Self Organising Map (SOM) for clustering of atomistic samples through unsupervised learning.

Self Organising Map for Clustering of Atomistic Samples - V2 Description Self Organising Map (also known as Kohonen Network) implemented in Python for

Franco Aquistapace 0 Nov 16, 2021
Python module for performing linear regression for data with measurement errors and intrinsic scatter

Linear regression for data with measurement errors and intrinsic scatter (BCES) Python module for performing robust linear regression on (X,Y) data po

Rodrigo Nemmen 56 Sep 27, 2022