Bonsai: Gradient Boosted Trees + Bayesian Optimization

Overview

Bonsai: Gradient Boosted Trees + Bayesian Optimization

Bonsai is a wrapper for the XGBoost and Catboost model training pipelines that leverages Bayesian optimization for computationally efficient hyperparameter tuning.

Despite being a very small package, it has access to nearly all of the configurable parameters in XGBoost and CatBoost as well as the BayesianOptimization package allowing users to specify unique objectives, metrics, parameter search ranges, and search policies. This is made possible thanks to the strong similarities between both libraries.

$ pip install bonsai-tree

References/Dependencies:

Why use Bonsai?

Grid search and random search are the most commonly used algorithms for exploring the hyperparameter space for a wide range of machine learning models. While effective for optimizing over low dimensional hyperparameter spaces (ex: few regularization terms), these methods do not scale well to models with a large number of hyperparameters such as gradient boosted trees.

Bayesian optimization on the other hand dynamically samples from the hyperparameter space with the goal of minimizing uncertaintly about the underlying objective function. For the case of model optimization, this consists of iteratively building a prior distribution of functions over the hyperparameter space and sampling with the goal of minimizing the posterior variance of the loss surface (via Gaussian Processes).

Model Configuration

Since Bonsai is simply a wrapper for both XGBoost and CatBoost, the model_params dict is synonymous with the params argument for both catboost.fit() and xgboost.fit(). Additionally, you must encode your categorical features as usual depending on which library you are using (XGB: One-Hot, CB: Label).

Below is a simple example of binary classification using CatBoost:

# label encoded training data
X = train.drop(target, axis = 1)
y = train[target]

# same args as catboost.train(...)
model_params = dict(objective = 'Logloss', verbose = False)

# same args as catboost.cv(...)
cv_params = dict(nfold = 5)

The pbounds dict as seen below specifies the hyperparameter bounds over which the optimizer will search. Additionally, the opt_config dictionary is for configuring the optimizer itself. Refer to the BayesianOptimization documentation to learn more.

# defining parameter search ranges
pbounds = dict(
  eta = (0.15, 0.4), 
  n_estimators = (200,2000), 
  max_depth = (4, 8)
)

# 10 warm up samples + 10 optimizing steps
n_iter, init_points= 10, 10

# to learn more about customizing your search policy:
# BayesianOptimization/examples/exploitation_vs_exploration.ipynb
opt_config = dict(acq = 'ei', xi = 1e-2)

Tuning and Prediction

All that is left is to initialize and optimize.

from bonsai.tune import CB_Tuner

# note that 'cats' is a list of categorical feature names
tuner = CB_Tuner(X, y, cats, model_params, cv_params, pbounds)
tuner.optimize(n_iter, init_points, opt_config, bounds_transformer)

After the optimal parameters are found, the model is trained and stored internally giving full access to the CatBoost model.

test_pool = catboost.Pool(test, cat_features = cats)
preds = tuner.model.predict(test_pool, prediction_type = 'Probability')

Bonsai also comes with a parallel coordinates plotting functionality allowing users to further narrow down their parameter search ranges as needed.

from bonsai.utils import parallel_coordinates

# DataFrame with hyperparams and observed loss
results = tuner.opt_results
parallel_coordinates(results)

Owner
Landon Buechner
A Streamlit demo to interactively visualize Uber pickups in New York City

Streamlit Demo: Uber Pickups in New York City A Streamlit demo written in pure Python to interactively visualize Uber pickups in New York City. View t

Streamlit 230 Dec 28, 2022
Implementation of linesearch Optimization Algorithms in Python

Nonlinear Optimization Algorithms During my time as Scientific Assistant at the Karlsruhe Institute of Technology (Germany) I implemented various Opti

Paul 3 Dec 06, 2022
BudouX is the successor to Budou, the machine learning powered line break organizer tool.

BudouX Standalone. Small. Language-neutral. BudouX is the successor to Budou, the machine learning powered line break organizer tool. It is standalone

Google 868 Jan 05, 2023
Data from "Datamodels: Predicting Predictions with Training Data"

Data from "Datamodels: Predicting Predictions with Training Data" Here we provid

Madry Lab 51 Dec 09, 2022
A game theoretic approach to explain the output of any machine learning model.

SHAP (SHapley Additive exPlanations) is a game theoretic approach to explain the output of any machine learning model. It connects optimal credit allo

Scott Lundberg 18.2k Jan 02, 2023
learn python in 100 days, a simple step could be follow from beginner to master of every aspect of python programming and project also include side project which you can use as demo project for your personal portfolio

learn python in 100 days, a simple step could be follow from beginner to master of every aspect of python programming and project also include side project which you can use as demo project for your

BDFD 6 Nov 05, 2022
A simple and lightweight genetic algorithm for optimization of any machine learning model

geneticml This package contains a simple and lightweight genetic algorithm for optimization of any machine learning model. Installation Use pip to ins

Allan Barcelos 8 Aug 10, 2022
ZenML 🙏: MLOps framework to create reproducible ML pipelines for production machine learning.

ZenML is an extensible, open-source MLOps framework to create production-ready machine learning pipelines. It has a simple, flexible syntax, is cloud and tool agnostic, and has interfaces/abstraction

ZenML 2.6k Jan 08, 2023
Pandas DataFrames and Series as Interactive Tables in Jupyter

Pandas DataFrames and Series as Interactive Tables in Jupyter Star Turn pandas DataFrames and Series into interactive datatables in both your notebook

Marc Wouts 364 Jan 04, 2023
scikit-learn: machine learning in Python

scikit-learn is a Python module for machine learning built on top of SciPy and is distributed under the 3-Clause BSD license. The project was started

neurodata 3 Dec 16, 2022
Implementation of K-Nearest Neighbors Algorithm Using PySpark

KNN With Spark Implementation of KNN using PySpark. The KNN was used on two separate datasets (https://archive.ics.uci.edu/ml/datasets/iris and https:

Zachary Petroff 4 Dec 30, 2022
DistML is a Ray extension library to support large-scale distributed ML training on heterogeneous multi-node multi-GPU clusters

DistML is a Ray extension library to support large-scale distributed ML training on heterogeneous multi-node multi-GPU clusters

27 Aug 19, 2022
A collection of Machine Learning Models To Web Api which are built on open source technologies/frameworks like Django, Flask.

Author Ibrahim Koné From-Machine-Learning-Models-To-WebAPI A collection of Machine Learning Models To Web Api which are built on open source technolog

Ibrahim Koné 2 May 24, 2022
A collection of video resources for machine learning

Machine Learning Videos This is a collection of recorded talks at machine learning conferences, workshops, seminars, summer schools, and miscellaneous

Dustin Tran 1.5k Dec 29, 2022
using Machine Learning Algorithm to classification AppleStore application

AppleStore-classification-with-Machine-learning-Algo- using Machine Learning Algorithm to classification AppleStore application. the first step : 1: p

Mohammed Hussien 2 May 02, 2022
Azure MLOps (v2) solution accelerators.

Azure MLOps (v2) solution accelerator Welcome to the MLOps (v2) solution accelerator repository! This project is intended to serve as the starting poi

Microsoft Azure 233 Jan 01, 2023
BASTA: The BAyesian STellar Algorithm

BASTA: BAyesian STellar Algorithm Current stable version: v1.0 Important note: BASTA is developed for Python 3.8, but Python 3.7 should work as well.

BASTA team 16 Nov 15, 2022
A complete guide to start and improve in machine learning (ML)

A complete guide to start and improve in machine learning (ML), artificial intelligence (AI) in 2021 without ANY background in the field and stay up-to-date with the latest news and state-of-the-art

Louis-François Bouchard 3.3k Jan 04, 2023
stability-selection - A scikit-learn compatible implementation of stability selection

stability-selection - A scikit-learn compatible implementation of stability selection stability-selection is a Python implementation of the stability

185 Dec 03, 2022
Continuously evaluated, functional, incremental, time-series forecasting

timemachines Autonomous, univariate, k-step ahead time-series forecasting functions assigned Elo ratings You can: Use some of the functionality of a s

Peter Cotton 343 Jan 04, 2023