A data preprocessing package for time series data. Design for machine learning and deep learning.

Overview

Time Series Transformer

Documentation https://allen-chiang.github.io/Time-Series-Transformer/

made-with-python Build Build Status Board Status CodeFactor

import pandas as pd
import numpy as np
from time_series_transform.sklearn import *
import time_series_transform as tst

Introduction

This package provides tools for time series data preprocessing. There are two main components inside the package: Time_Series_Transformer and Stock_Transformer. Time_Series_Transformer is a general class for all type of time series data, while Stock_Transformer is a sub-class of Time_Series_Transformer. Time_Series_Transformer has different functions for data manipulation, io transformation, and making simple plots. This tutorial will take a quick look at the functions for data manipulation and basic io. For the plot functions, there will be other tutorial to explain.

Time_Series_Transformer

Since all the time series data having time data, Time_Series_Transformer is required to specify time index. The basic time series data is time series data with no special category. However, there a lot of cases that a time series data is associating with categories. For example, inventory data is usually associate with product name or stores, or stock data is having different ticker names or brokers. To address this question, Time_Series_Transformer can specify the main category index. Given the main category index, the data can be manipulated in parallel corresponding to its category.

Here is a simple example to create a Time_Series_Transformer without specifying its category.

data = {
    'time':[1,2,3,4,5],
    'data1':[1,2,3,4,5],
    'data2':[6,7,8,9,10]
}
trans = tst.Time_Series_Transformer(data,timeSeriesCol='time')
trans
data column
-----------
time
data1
data2
time length: 5
category: None

There are two ways to manipulate the data. The first way is use the pre-made functions, and the second way is to use the transform function and provide your custom function. There are six pre-made functions including make_lag, make_lead, make_lag_sequence, make_lead_sequence, and make_stack_sequence. In the following demonstration, we will show each of the pre-made functions.

Pre-made functions

make_lag and make_lead functions are going to create lag/lead data for input columns. This type of manipulation could be useful for machine learning.

trans = tst.Time_Series_Transformer(data,timeSeriesCol='time')
trans = trans.make_lag(
    inputLabels = ['data1','data2'],
    lagNum = 1,
    suffix = '_lag_',
    fillMissing = np.nan
            )
print(trans.to_pandas())
   time  data1  data2  data1_lag_1  data2_lag_1
0     1      1      6          NaN          NaN
1     2      2      7          1.0          6.0
2     3      3      8          2.0          7.0
3     4      4      9          3.0          8.0
4     5      5     10          4.0          9.0
trans = tst.Time_Series_Transformer(data,timeSeriesCol='time')
trans = trans.make_lead(
    inputLabels = ['data1','data2'],
    leadNum = 1,
    suffix = '_lead_',
    fillMissing = np.nan
            )
print(trans.to_pandas())
   time  data1  data2  data1_lead_1  data2_lead_1
0     1      1      6           2.0           7.0
1     2      2      7           3.0           8.0
2     3      3      8           4.0           9.0
3     4      4      9           5.0          10.0
4     5      5     10           NaN           NaN

make_lag_sequence and make_lead_sequence is to create a sequence for a given window length and lag or lead number. This manipulation could be useful for Deep learning.

trans = tst.Time_Series_Transformer(data,timeSeriesCol='time')
trans = trans.make_lag_sequence(
    inputLabels = ['data1','data2'],
    windowSize = 2,
    lagNum =1,
    suffix = '_lag_seq_'
)
print(trans.to_pandas())
   time  data1  data2 data1_lag_seq_2 data2_lag_seq_2
0     1      1      6      [nan, nan]      [nan, nan]
1     2      2      7      [nan, 1.0]      [nan, 6.0]
2     3      3      8      [1.0, 2.0]      [6.0, 7.0]
3     4      4      9      [2.0, 3.0]      [7.0, 8.0]
4     5      5     10      [3.0, 4.0]      [8.0, 9.0]
trans = tst.Time_Series_Transformer(data,timeSeriesCol='time')
trans = trans.make_lead_sequence(
    inputLabels = ['data1','data2'],
    windowSize = 2,
    leadNum =1,
    suffix = '_lead_seq_'
)
print(trans.to_pandas())
   time  data1  data2 data1_lead_seq_2 data2_lead_seq_2
0     1      1      6       [2.0, 3.0]       [7.0, 8.0]
1     2      2      7       [3.0, 4.0]       [8.0, 9.0]
2     3      3      8       [4.0, 5.0]      [9.0, 10.0]
3     4      4      9       [nan, nan]       [nan, nan]
4     5      5     10       [nan, nan]       [nan, nan]

Custom Functions

To use the transform function, you have to create your custom functions. The input data will be passed as dict of list, and the output data should be either pandas DataFrame, pandas Series, numpy ndArray or list. Note, the output length should be in consist with the orignal data length.

For exmaple, this function takes input dictionary data and sum them up. The final output is a list.

import copy
def list_output (dataDict):
    res = []
    for i in dataDict:
        if len(res) == 0:
            res = copy.deepcopy(dataDict[i])
            continue
        for ix,v in enumerate(dataDict[i]):
            res[ix] += v
    return res
trans = tst.Time_Series_Transformer(data,timeSeriesCol='time')
trans = trans.transform(
    inputLabels = ['data1','data2'],
    newName = 'sumCol',
    func = list_output
)
print(trans.to_pandas())
   time  data1  data2  sumCol
0     1      1      6       7
1     2      2      7       9
2     3      3      8      11
3     4      4      9      13
4     5      5     10      15

The following example will output as pandas DataFrame and also takes additional parameters. Note: since pandas already has column name, the new name will automatically beocme suffix.

def pandas_output(dataDict, pandasColName):
    res = []
    for i in dataDict:
        if len(res) == 0:
            res = copy.deepcopy(dataDict[i])
            continue
        for ix,v in enumerate(dataDict[i]):
            res[ix] += v
    return pd.DataFrame({pandasColName:res})
trans = tst.Time_Series_Transformer(data,timeSeriesCol='time')
trans = trans.transform(
    inputLabels = ['data1','data2'],
    newName = 'sumCol',
    func = pandas_output,
    pandasColName = "pandasName"
)
print(trans.to_pandas())
   time  data1  data2  sumCol_pandasName
0     1      1      6                  7
1     2      2      7                  9
2     3      3      8                 11
3     4      4      9                 13
4     5      5     10                 15

Data with Category

Since time series data could be associated with different category, Time_Series_Transformer can specify the mainCategoryCol parameter to point out the main category. This class only provide one columns for main category because multiple dimensions can be aggregated into a new column as main category.

The following example has one category with two type a and b. Each of them has some overlaped and different timestamp.

data = {
    "time":[1,2,3,4,5,1,3,4,5],
    'data':[1,2,3,4,5,1,2,3,4],
    "category":['a','a','a','a','a','b','b','b','b']
}
trans = tst.Time_Series_Transformer(data,'time','category')
trans
data column
-----------
time
data
time length: 5
category: a

data column
-----------
time
data
time length: 4
category: b

main category column: category

Since we specify the main category column, data manipulation functions can use n_jobs to execute the function in parallel. The parallel execution is with joblib implmentation (https://joblib.readthedocs.io/en/latest/).

trans = trans.make_lag(
    inputLabels = ['data'],
    lagNum = 1,
    suffix = '_lag_',
    fillMissing = np.nan,
    n_jobs = 2,
    verbose = 10        
)
print(trans.to_pandas())
[Parallel(n_jobs=2)]: Using backend LokyBackend with 2 concurrent workers.


   time  data  data_lag_1 category
0     1     1         NaN        a
1     2     2         1.0        a
2     3     3         2.0        a
3     4     4         3.0        a
4     5     5         4.0        a
5     1     1         NaN        b
6     3     2         1.0        b
7     4     3         2.0        b
8     5     4         3.0        b


[Parallel(n_jobs=2)]: Done   2 out of   2 | elapsed:    3.6s remaining:    0.0s
[Parallel(n_jobs=2)]: Done   2 out of   2 | elapsed:    3.6s finished

To further support the category, there are two functions to deal with different time length data: pad_different_category_time and remove_different_category_time. The first function is padding the different length into same length, while the other is remove different timestamp.

trans = tst.Time_Series_Transformer(data,'time','category')
trans = trans.pad_different_category_time(fillMissing = np.nan
)
print(trans.to_pandas())
   time  data category
0     1   1.0        a
1     2   2.0        a
2     3   3.0        a
3     4   4.0        a
4     5   5.0        a
5     1   1.0        b
6     2   NaN        b
7     3   2.0        b
8     4   3.0        b
9     5   4.0        b
trans = tst.Time_Series_Transformer(data,'time','category')
trans = trans.remove_different_category_time()
print(trans.to_pandas())
   time  data category
0     1     1        a
1     3     3        a
2     4     4        a
3     5     5        a
4     1     1        b
5     3     2        b
6     4     3        b
7     5     4        b

IO

IO is a huge component for this package. The current version support pandas DataFrame, numpy ndArray, Apache Arrow Table, Apache Feather, and Apache Parquet. All those io can specify whether to expand category or time for the export format. In this demo, we will show numpy and pandas. Also, Transformer can combine make_label function and sepLabel parameter inside of export to seperate data and label.

pandas

data = {
    "time":[1,2,3,4,5,1,3,4,5],
    'data':[1,2,3,4,5,1,2,3,4],
    "category":['a','a','a','a','a','b','b','b','b']
}
df = pd.DataFrame(data)
trans = tst.Time_Series_Transformer.from_pandas(
    pandasFrame = df,
    timeSeriesCol = 'time',
    mainCategoryCol= 'category'
)
trans
data column
-----------
time
data
time length: 5
category: a

data column
-----------
time
data
time length: 4
category: b

main category column: category

To expand the data, all category should be in consist. Besides the pad and remove function, we can use preprocessType parameter to achive that.

print(trans.to_pandas(
    expandCategory = True,
    expandTime = False,
    preprocessType = 'pad'
))
   time  data_a  data_b
0     1       1     1.0
1     2       2     NaN
2     3       3     2.0
3     4       4     3.0
4     5       5     4.0
print(trans.to_pandas(
    expandCategory = False,
    expandTime = True,
    preprocessType = 'pad'
))
   data_1  data_2  data_3  data_4  data_5 category
0       1     2.0       3       4       5        a
1       1     NaN       2       3       4        b
print(trans.to_pandas(
    expandCategory = True,
    expandTime = True,
    preprocessType = 'pad'
))
   data_a_1  data_b_1  data_a_2  data_b_2  data_a_3  data_b_3  data_a_4  \
0         1       1.0         2       NaN         3       2.0         4   

   data_b_4  data_a_5  data_b_5  
0       3.0         5       4.0  

make_label function can be used with sepLabel parameter. This function can be used for seperating X and y for machine learning cases.

trans = trans.make_lead('data',leadNum = 1,suffix = '_lead_')
trans = trans.make_label("data_lead_1")
data, label = trans.to_pandas(
    expandCategory = False,
    expandTime = False,
    preprocessType = 'pad',
    sepLabel = True
)
print(data)
   time  data category
0     1   1.0        a
1     2   2.0        a
2     3   3.0        a
3     4   4.0        a
4     5   5.0        a
5     1   1.0        b
6     2   NaN        b
7     3   2.0        b
8     4   3.0        b
9     5   4.0        b
print(label)
   data_lead_1
0          2.0
1          3.0
2          4.0
3          5.0
4          NaN
5          2.0
6          NaN
7          3.0
8          4.0
9          NaN

numpy

Since numpy has no column name, it has to use index number to specify column.

data = {
    "time":[1,2,3,4,5,1,3,4,5],
    'data':[1,2,3,4,5,1,2,3,4],
    "category":['a','a','a','a','a','b','b','b','b']
}
npArray = pd.DataFrame(data).values
trans = tst.Time_Series_Transformer.from_numpy(
    numpyData= npArray,
    timeSeriesCol = 0,
    mainCategoryCol = 2)
trans
data column
-----------
0
1
time length: 5
category: a

data column
-----------
0
1
time length: 4
category: b

main category column: 2
trans = trans.make_lead(1,leadNum = 1,suffix = '_lead_')
trans = trans.make_label("1_lead_1")
X,y = trans.to_pandas(
    expandCategory = False,
    expandTime = False,
    preprocessType = 'pad',
    sepLabel = True
)
print(X)
   0    1  2
0  1  1.0  a
1  2  2.0  a
2  3  3.0  a
3  4  4.0  a
4  5  5.0  a
5  1  1.0  b
6  2  NaN  b
7  3  2.0  b
8  4  3.0  b
9  5  4.0  b
print(y)
   1_lead_1
0       2.0
1       3.0
2       4.0
3       5.0
4       NaN
5       2.0
6       NaN
7       3.0
8       4.0
9       NaN

Stock_Transformer

Stock_Transformer is a subclass of Time_Series_Transformer. Hence, all the function demonstrated in Time_Series_Transformer canbe used in Stock_Transformer. The differences for Stock_Transformer is that it is required to specify High, Low, Open, Close, Volume columns. Besides these information, it has pandas-ta strategy implmentation to create technical indicator (https://github.com/twopirllc/pandas-ta). Moreover, the io class for Stock_Transformer support yfinance and investpy. We can directly extract data from these api.

create technical indicator

stock = tst.Stock_Transformer.from_stock_engine_period(
    symbols = 'GOOGL',period ='1y', engine = 'yahoo'
)
stock
data column
-----------
Date
Open
High
Low
Close
Volume
Dividends
Stock Splits
time length: 253
category: None
import pandas_ta as ta
MyStrategy = ta.Strategy(
    name="DCSMA10",
    ta=[
        {"kind": "ohlc4"},
        {"kind": "sma", "length": 10},
        {"kind": "donchian", "lower_length": 10, "upper_length": 15},
        {"kind": "ema", "close": "OHLC4", "length": 10, "suffix": "OHLC4"},
    ]
)
stock = stock.get_technial_indicator(MyStrategy)
print(stock.to_pandas().head())
         Date         Open         High          Low        Close   Volume  \
0  2020-01-06  1351.630005  1398.319946  1351.000000  1397.810059  2338400   
1  2020-01-07  1400.459961  1403.500000  1391.560059  1395.109985  1716500   
2  2020-01-08  1394.819946  1411.849976  1392.630005  1405.040039  1765700   
3  2020-01-09  1421.930054  1428.680054  1410.209961  1419.790039  1660000   
4  2020-01-10  1429.469971  1434.939941  1419.599976  1428.959961  1312900   

   Dividends  Stock Splits        OHLC4  SMA_10  DCL_10_15  DCM_10_15  \
0          0             0  1374.690002     NaN        NaN        NaN   
1          0             0  1397.657501     NaN        NaN        NaN   
2          0             0  1401.084991     NaN        NaN        NaN   
3          0             0  1420.152527     NaN        NaN        NaN   
4          0             0  1428.242462     NaN        NaN        NaN   

   DCU_10_15  EMA_10_OHLC4  
0        NaN           NaN  
1        NaN           NaN  
2        NaN           NaN  
3        NaN           NaN  
4        NaN           NaN  

For more usage please visit our gallery

You might also like...
Automatically build ARIMA, SARIMAX, VAR, FB Prophet and XGBoost Models on Time Series data sets with a Single Line of Code. Now updated with Dask to handle millions of rows.
Automatically build ARIMA, SARIMAX, VAR, FB Prophet and XGBoost Models on Time Series data sets with a Single Line of Code. Now updated with Dask to handle millions of rows.

Auto_TS: Auto_TimeSeries Automatically build multiple Time Series models using a Single Line of Code. Now updated with Dask. Auto_timeseries is a comp

MaD GUI is a basis for graphical annotation and computational analysis of time series data.
MaD GUI is a basis for graphical annotation and computational analysis of time series data.

MaD GUI Machine Learning and Data Analytics Graphical User Interface MaD GUI is a basis for graphical annotation and computational analysis of time se

Tool for producing high quality forecasts for time series data that has multiple seasonality with linear or non-linear growth.

Prophet: Automatic Forecasting Procedure Prophet is a procedure for forecasting time series data based on an additive model where non-linear trends ar

Visualize classified time series data with interactive Sankey plots in Google Earth Engine
Visualize classified time series data with interactive Sankey plots in Google Earth Engine

sankee Visualize changes in classified time series data with interactive Sankey plots in Google Earth Engine Contents Description Installation Using P

PyPOTS - A Python Toolbox for Data Mining on Partially-Observed Time Series

A python toolbox/library for data mining on partially-observed time series, supporting tasks of forecasting/imputation/classification/clustering on incomplete multivariate time series with missing values.

Examples and code for the Practical Machine Learning workshop series

Practical Machine Learning Workshop Series Practical Machine Learning for Quantitative Finance Post conference workshop at the WBS Spring Conference D

Data science, Data manipulation and Machine learning package.
Data science, Data manipulation and Machine learning package.

duality Data science, Data manipulation and Machine learning package. Use permitted according to the terms of use and conditions set by the attached l

A python library for easy manipulation and forecasting of time series.
A python library for easy manipulation and forecasting of time series.

Time Series Made Easy in Python darts is a python library for easy manipulation and forecasting of time series. It contains a variety of models, from

An open-source library of algorithms to analyse time series in GPU and CPU.
An open-source library of algorithms to analyse time series in GPU and CPU.

An open-source library of algorithms to analyse time series in GPU and CPU.

Comments
  • sklearn module import error

    sklearn module import error

    Describe the bug A clear and concise description of what the bug is. import error -> from time_series_transform.sklearn import * To Reproduce Steps to reproduce the behavior:

    1. Go to '...'
    2. Click on '....'
    3. Scroll down to '....'
    4. See error

    Expected behavior A clear and concise description of what you expected to happen.

    Screenshots If applicable, add screenshots to help explain your problem.

    Desktop (please complete the following information):

    • OS: [e.g. iOS]
    • Browser [e.g. chrome, safari]
    • Version [e.g. 22]

    Smartphone (please complete the following information):

    • Device: [e.g. iPhone6]
    • OS: [e.g. iOS8.1]
    • Browser [e.g. stock browser, safari]
    • Version [e.g. 22]

    Additional context Add any other context about the problem here.

    opened by allen-chiang 0
Releases(1.1.2)
Timeseries analysis for neuroscience data

=================================================== Nitime: timeseries analysis for neuroscience data ===============================================

NIPY developers 212 Dec 09, 2022
Xeasy-ml is a packaged machine learning framework.

xeasy-ml 1. What is xeasy-ml Xeasy-ml is a packaged machine learning framework. It allows a beginner to quickly build a machine learning model and use

9 Mar 14, 2022
Diabetes Prediction with Logistic Regression

Diabetes Prediction with Logistic Regression Exploratory Data Analysis Data Preprocessing Model & Prediction Model Evaluation Model Validation: Holdou

AZİZE SULTAN PALALI 2 Oct 23, 2021
SmartSim makes it easier to use common Machine Learning (ML) libraries like PyTorch and TensorFlow

SmartSim makes it easier to use common Machine Learning (ML) libraries like PyTorch and TensorFlow, in High Performance Computing (HPC) simulations and workloads.

Book Recommender System Using Sci-kit learn N-neighbours

Model-Based-Recommender-Engine I created a book Recommender System using Sci-kit learn's N-neighbours algorithm for my model and the streamlit library

1 Jan 13, 2022
fastFM: A Library for Factorization Machines

Citing fastFM The library fastFM is an academic project. The time and resources spent developing fastFM are therefore justified by the number of citat

1k Dec 24, 2022
A webpage that utilizes machine learning to extract sentiments from tweets.

Tweets_Classification_Webpage The goal of this project is to be able to predict what rating customers on social media platforms would give to products

Ayaz Nakhuda 1 Dec 30, 2021
Time series changepoint detection

changepy Changepoint detection in time series in pure python Install pip install changepy Examples from changepy import pelt from cha

Rui Gil 92 Nov 08, 2022
Tools for Optuna, MLflow and the integration of both.

HPOflow - Sphinx DOC Tools for Optuna, MLflow and the integration of both. Detailed documentation with examples can be found here: Sphinx DOC Table of

Telekom Open Source Software 17 Nov 20, 2022
Code Repository for Machine Learning with PyTorch and Scikit-Learn

Code Repository for Machine Learning with PyTorch and Scikit-Learn

Sebastian Raschka 1.4k Jan 03, 2023
Transform ML models into a native code with zero dependencies

m2cgen (Model 2 Code Generator) - is a lightweight library which provides an easy way to transpile trained statistical models into a native code

Bayes' Witnesses 2.3k Jan 03, 2023
BigDL: Distributed Deep Learning Framework for Apache Spark

BigDL: Distributed Deep Learning on Apache Spark What is BigDL? BigDL is a distributed deep learning library for Apache Spark; with BigDL, users can w

4.1k Jan 09, 2023
A statistical library designed to fill the void in Python's time series analysis capabilities, including the equivalent of R's auto.arima function.

pmdarima Pmdarima (originally pyramid-arima, for the anagram of 'py' + 'arima') is a statistical library designed to fill the void in Python's time se

alkaline-ml 1.3k Jan 06, 2023
Model Agnostic Confidence Estimator (MACEST) - A Python library for calibrating Machine Learning models' confidence scores

Model Agnostic Confidence Estimator (MACEST) - A Python library for calibrating Machine Learning models' confidence scores

Oracle 95 Dec 28, 2022
Evidently helps analyze machine learning models during validation or production monitoring

Evidently helps analyze machine learning models during validation or production monitoring. The tool generates interactive visual reports and JSON profiles from pandas DataFrame or csv files. Current

Evidently AI 3.1k Jan 07, 2023
ELI5 is a Python package which helps to debug machine learning classifiers and explain their predictions

A library for debugging/inspecting machine learning classifiers and explaining their predictions

154 Dec 17, 2022
Repositório para o #alurachallengedatascience1

1° Challenge de Dados - Alura A Alura Voz é uma empresa de telecomunicação que nos contratou para atuar como cientistas de dados na equipe de vendas.

Sthe Monica 16 Nov 10, 2022
Machine Learning e Data Science com Python

Machine Learning e Data Science com Python Arquivos do curso de Data Science e Machine Learning com Python na Udemy, cliqe aqui para acessá-lo. O prin

Renan Barbosa 1 Jan 27, 2022
Made in collaboration with Chris George for Art + ML Spring 2019.

Deepdream Eyes Made in collaboration with Chris George for Art + ML Spring 2019.

Francisco Cabrera 1 Jan 12, 2022
🎛 Distributed machine learning made simple.

🎛 lazycluster Distributed machine learning made simple. Use your preferred distributed ML framework like a lazy engineer. Getting Started • Highlight

Machine Learning Tooling 44 Nov 27, 2022