Tools for Optuna, MLflow and the integration of both.

Overview

HPOflow - Sphinx DOC

DOC MIT License Contributor Covenant Python Version pypi
pytest status Static Code Checks status Build & Deploy Doc GitHub issues

Tools for Optuna, MLflow and the integration of both.

Detailed documentation with examples can be found here: Sphinx DOC

Table of Contents

Maintainers

One Conversation
This project is maintained by the One Conversation team of Deutsche Telekom AG.

The main components are:

Installation

HPOflow is available at the Python Package Index (PyPI). It can be installed with pip:

$ pip install hpoflow

Some additional dependencies might be necessary.

To use hpoflow.optuna_mlflow.OptunaMLflow:

$ pip install mlflow GitPython

To use hpoflow.optuna_transformers.OptunaMLflowCallback:

$ pip install mlflow GitPython transformers

To install all optional dependencies use:

$ pip install hpoflow[optional]

Support and Feedback

The following channels are available for discussions, feedback, and support requests:

Reporting Security Vulnerabilities

This project is built with security and data privacy in mind to ensure your data is safe. We are grateful for security researchers and users reporting a vulnerability to us, first. To ensure that your request is handled in a timely manner and non-disclosure of vulnerabilities can be assured, please follow the below guideline.

Please do not report security vulnerabilities directly on GitHub. GitHub Issues can be publicly seen and therefore would result in a direct disclosure.

Please address questions about data privacy, security concepts, and other media requests to the [email protected] mailbox.

Contribution

Our commitment to open source means that we are enabling - in fact encouraging - all interested parties to contribute and become part of our developer community.

Contribution and feedback is encouraged and always welcome. For more information about how to contribute, as well as additional contribution information, see our Contribution Guidelines.

Code of Conduct

This project has adopted the Contributor Covenant as our code of conduct. Please see the details in our Contributor Covenant Code of Conduct. All contributors must abide by the code of conduct.

Licensing

Copyright (c) 2021 Philip May, Deutsche Telekom AG
Copyright (c) 2021 Philip May
Copyright (c) 2021 Timothy Wolff-Piggott

Licensed under the MIT License (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License by reviewing the file LICENSE in the repository.

Comments
  • review README.md and CONTRIBUTING.md

    review README.md and CONTRIBUTING.md

    Review README.md and CONTRIBUTING.md

    • is there something missing? maybe compare with optuna and transformers
    • spelling
    • idiomatic english
    • consistency
    • correctness
    • links ok?
    • ...

    PS: The real documentation is still missing and a know issue.

    opened by PhilipMay 12
  • add typing in optuna_transformers

    add typing in optuna_transformers

    @twolffpiggott can you please tell me the type of this?

    https://github.com/telekom/HPOflow/blob/e2b0943218af419a79ce95e60b67c9a4c2477349/hpoflow/optuna_transformers.py#L47

    opened by PhilipMay 6
  • add `transformers.py`

    add `transformers.py`

    @twolffpiggott should we add this here or to an other project we open source?

    https://github.com/PhilipMay/mltb/blob/master/mltb/integration/transformers.py

    enhancement 
    opened by PhilipMay 6
  • Create Sphinx documentation page

    Create Sphinx documentation page

    • [x] setup
    • [x] make GH action
    • [x] setup page
    • [x] change styling to telekom style
    • switch to MD
    • [x] add more content
    • [x] link from README to page
    • [x] link from pypi to GH page
    • [x] add impressum
    • [x] remove strange mouse over image effect
    • add version info
    documentation 
    opened by PhilipMay 4
  • Problems with direct `_imports.check()` call

    Problems with direct `_imports.check()` call

    When the __init__.py imports OMLflowCallback the optuna_transformers.py script is executed. That executes the _imports.check() call which then throws an exception if transformers or mlflow is not installed. But that should be avoided.

    See here: https://github.com/telekom/HPOflow/blob/d1cce5cbc2a84634d1484a053286000dda05b681/hpoflow/optuna_transformers.py#L11-L17

    The solution would be to put the _imports.check() call into the constructor. But that is not possible because OMLflowCallback inherits from transformers.

    The only solution I have is to put OMLflowCallback into an factory function that creates an OMLflowCallback and does the _imports.check() in there.

    @twolffpiggott what do you think?

    bug 
    opened by PhilipMay 3
  • Flake8 ignore list for Black compatibility

    Flake8 ignore list for Black compatibility

    Flake8 raises a warning for "E203" when it encounters a Black decision to insert whitespace before : in slicing syntax.

    Black's behaviour is more correct here, so my suggestion is to add "E203" to the flake8 config ignore list.

    i.e. in setup.cfg:

    [flake8]
    ...
    extend-ignore = E203
    opened by twolffpiggott 3
  • Simple Example?

    Simple Example?

    I don't understand how to use this package. Could you provide a basic example? I don't understand the import_structure and how it relates to importing the modules? Thanks

    opened by jmrichardson 2
  • WIP prefix in contrib file

    WIP prefix in contrib file

    Should this

    Create Work In Progress [WIP] pull requests only if you need clarification or an explicit review before you can continue your work item.

    be more like this

    Add a [WIP] prefix on your pull request name if you need clarification or an explicit review before you can continue your work item.

    documentation 
    opened by PhilipMay 2
Releases(0.1.4)
Owner
Telekom Open Source Software
published by Deutsche Telekom AG and partner companies
Telekom Open Source Software
DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective.

DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective. 10x Larger Models 10x Faster Trainin

Microsoft 8.4k Dec 30, 2022
An AutoML survey focusing on practical systems.

This project is a community effort in constructing and maintaining an up-to-date beginner-friendly introduction to AutoML, focusing on practical systems. AutoML is a big field, and continues to grow

AutoGOAL 16 Aug 14, 2022
Cryptocurrency price prediction and exceptions in python

Cryptocurrency price prediction and exceptions in python This is a coursework on foundations of computing module Through this coursework i worked on m

Panagiotis Sotirellos 1 Nov 07, 2021
Machine Learning Model to predict the payment date of an invoice when it gets created in the system.

Payment-Date-Prediction Machine Learning Model to predict the payment date of an invoice when it gets created in the system.

15 Sep 09, 2022
ThunderGBM: Fast GBDTs and Random Forests on GPUs

Documentations | Installation | Parameters | Python (scikit-learn) interface What's new? ThunderGBM won 2019 Best Paper Award from IEEE Transactions o

Xtra Computing Group 648 Dec 16, 2022
It is a forest of random projection trees

rpforest rpforest is a Python library for approximate nearest neighbours search: finding points in a high-dimensional space that are close to a given

Lyst 211 Dec 29, 2022
All-in-one web-based development environment for machine learning

All-in-one web-based development environment for machine learning Getting Started • Features & Screenshots • Support • Report a Bug • FAQ • Known Issu

3 Feb 03, 2021
Examples and code for the Practical Machine Learning workshop series

Practical Machine Learning Workshop Series Practical Machine Learning for Quantitative Finance Post conference workshop at the WBS Spring Conference D

CompatibL 21 Jun 25, 2022
Stats, linear algebra and einops for xarray

xarray-einstats Stats, linear algebra and einops for xarray ⚠️ Caution: This project is still in a very early development stage Installation To instal

ArviZ 30 Dec 28, 2022
Lightweight Machine Learning Experiment Logging 📖

Simple logging of statistics, model checkpoints, plots and other objects for your Machine Learning Experiments (MLE). Furthermore, the MLELogger comes with smooth multi-seed result aggregation and co

Robert Lange 65 Dec 08, 2022
The project's goal is to show a real world application of image segmentation using k means algorithm

The project's goal is to show a real world application of image segmentation using k means algorithm

2 Jan 22, 2022
Production Grade Machine Learning Service

This project is made to help you scale from a basic Machine Learning project for research purposes to a production grade Machine Learning web service

Abdullah Zaiter 10 Apr 04, 2022
This is an implementation of the proximal policy optimization algorithm for the C++ API of Pytorch

This is an implementation of the proximal policy optimization algorithm for the C++ API of Pytorch. It uses a simple TestEnvironment to test the algorithm

Martin Huber 59 Dec 09, 2022
DistML is a Ray extension library to support large-scale distributed ML training on heterogeneous multi-node multi-GPU clusters

DistML is a Ray extension library to support large-scale distributed ML training on heterogeneous multi-node multi-GPU clusters

27 Aug 19, 2022
The Ultimate FREE Machine Learning Study Plan

The Ultimate FREE Machine Learning Study Plan

Patrick Loeber (Python Engineer) 2.5k Jan 05, 2023
A simple example of ML classification, cross validation, and visualization of feature importances

Simple-Classifier This is a basic example of how to use several different libraries for classification and ensembling, mostly with sklearn. Example as

Rob 2 Aug 25, 2022
Spark development environment for k8s

Local Spark Dev Env with Docker Development environment for k8s. Using the spark-operator image to ensure it will be the same environment. Start conta

Otacilio Filho 18 Jan 04, 2022
Karate Club: An API Oriented Open-source Python Framework for Unsupervised Learning on Graphs (CIKM 2020)

Karate Club is an unsupervised machine learning extension library for NetworkX. Please look at the Documentation, relevant Paper, Promo Video, and Ext

Benedek Rozemberczki 1.8k Jan 03, 2023
NumPy-based implementation of a multilayer perceptron (MLP)

My own NumPy-based implementation of a multilayer perceptron (MLP). Several of its components can be tuned and played with, such as layer depth and size, hidden and output layer activation functions,

1 Feb 10, 2022