A Python Module That Uses ANN To Predict A Stocks Price And Also Provides Accurate Technical Analysis With Many High Potential Implementations!

Overview

Stox

A Module to predict the "close price" for the next day and give "technical analysis". It uses a Neural Network and the LSTM algorithm to predict the price. It uses a technical indicator algorithm developed by the Stox team for technical analysis. Check out how it works here.

Installation

Get it from PyPi:

pip3 install stox

Clone it from github:

git clone https://github.com/dopevog/stox.git
cd stox
python3 setup.py

Usage

Arguments:

    stock (str): stock ticker symbol
    output (str): 'list' or 'message' (Format Of Output)
    years (int or float): years of data to be considered
    chart (bool): generate performance plot

Returns:

List:

[company name, current price, predicted price, technical analysis, date (For)]

Message:

company name
current price
predicted price
technical analysis
data (for)

Examples:

Basic

import stox

script = input("Stock Ticker Symbol: ")
data = stox.stox.exec(script,'list')

print(data)
$ stox> python3 main.py
$ Stock Ticker Symbol: AAPL
$ ['Apple Inc.', 125.43000030517578, 124.91, 'Bearish (Already)', '2021-05-24']

Intermediate

= data[1] * 0.02: if data[3] == "Bullish (Starting)": df['Signal'] = "Buy" elif data[3] == "Bullish (Already)": df['Signal'] = "Up" elif data[2] - data[1] <= data[1] * -0.02: if data[3] == "Bearish (Starting)": df['Signal'] = "Sell" elif data[3] == "Bearish (Already)": df['Signal'] = "Down" else: df['Signal'] = "None" x = x+1 df.to_csv("output.csv") print("Done") ">
import stox
import pandas as pd

stock_list = pd.read_csv("SPX500.csv") 
df = stock_list 
number_of_stocks = 505 
x = 0
while x < number_of_stocks:
    ticker = stock_list.iloc[x]["Symbols"]
    data = stox.stox.exec(ticker,'list')
    df['Price'] = data[1] 
    df['Prediction'] = data[2]
    df['Analysis'] = data[3]
    df['DateFor'] = data[4]
    if data[2] - data[1]  >= data[1]  * 0.02:
        if data[3] == "Bullish (Starting)":
            df['Signal'] = "Buy"
        elif data[3] == "Bullish (Already)":
            df['Signal'] = "Up"
    elif data[2] - data[1]  <= data[1]  * -0.02:
        if data[3] == "Bearish (Starting)":
            df['Signal'] = "Sell"
        elif data[3] == "Bearish (Already)":
            df['Signal'] = "Down"
    else:
        df['Signal'] = "None"
    x = x+1
df.to_csv("output.csv") 
print("Done") 
$ stox> python3 main.py
$ Done

More Examples Including These Ones Can Be Found Here

Possible Implentations

  • Algorithmic Trading
  • Single Stock Analysis
  • Multistock Analysis
  • And Much More!

Credits

License

This Project Has Been MIT Licensed

You might also like...
 Warren - Stock Price Predictor
Warren - Stock Price Predictor

Web app to predict closing stock prices in real time using Facebook's Prophet time series algorithm with a multi-variate, single-step time series forecasting strategy.

A machine learning project that predicts the price of used cars in the UK
A machine learning project that predicts the price of used cars in the UK

Car Price Prediction Image Credit: AA Cars Project Overview Scraped 3000 used cars data from AA Cars website using Python and BeautifulSoup. Cleaned t

A linear regression model for house price prediction

Linear_Regression_Model A linear regression model for house price prediction. This code is using these packages, so please make sure your have install

learn python in 100 days, a simple step could be follow from beginner to master of every aspect of python programming and project also include side project which you can use as demo project for your personal portfolio
learn python in 100 days, a simple step could be follow from beginner to master of every aspect of python programming and project also include side project which you can use as demo project for your personal portfolio

learn python in 100 days, a simple step could be follow from beginner to master of every aspect of python programming and project also include side project which you can use as demo project for your personal portfolio

Python-based implementations of algorithms for learning on imbalanced data.

ND DIAL: Imbalanced Algorithms Minimalist Python-based implementations of algorithms for imbalanced learning. Includes deep and representational learn

Houseprices - Predict sales prices and practice feature engineering, RFs, and gradient boosting
Houseprices - Predict sales prices and practice feature engineering, RFs, and gradient boosting

House Prices - Advanced Regression Techniques Predicting House Prices with Machine Learning This project is build to enhance my knowledge about machin

Used Logistic Regression, Random Forest, and XGBoost to predict the outcome of Search & Destroy games from the Call of Duty World League for the 2018 and 2019 seasons.
Used Logistic Regression, Random Forest, and XGBoost to predict the outcome of Search & Destroy games from the Call of Duty World League for the 2018 and 2019 seasons.

Call of Duty World League: Search & Destroy Outcome Predictions Growing up as an avid Call of Duty player, I was always curious about what factors led

Implementations of Machine Learning models, Regularizers, Optimizers and different Cost functions.

Linear Models Implementations of LinearRegression, LassoRegression and RidgeRegression with appropriate Regularizers and Optimizers. Linear Regression

 pure-predict: Machine learning prediction in pure Python
pure-predict: Machine learning prediction in pure Python

pure-predict speeds up and slims down machine learning prediction applications. It is a foundational tool for serverless inference or small batch prediction with popular machine learning frameworks like scikit-learn and fasttext. It implements the predict methods of these frameworks in pure Python.

Comments
  • new

    new

    My name is Luis, I'm a big-data machine-learning developer, I'm a fan of your work, and I usually check your updates.

    I was afraid that my savings would be eaten by inflation. I have created a powerful tool that based on past technical patterns (volatility, moving averages, statistics, trends, candlesticks, support and resistance, stock index indicators). All the ones you know (RSI, MACD, STOCH, Bolinger Bands, SMA, DEMARK, Japanese candlesticks, ichimoku, fibonacci, williansR, balance of power, murrey math, etc) and more than 200 others.

    The tool creates prediction models of correct trading points (buy signal and sell signal, every stock is good traded in time and direction). For this I have used big data tools like pandas python, stock market libraries like: tablib, TAcharts ,pandas_ta... For data collection and calculation. And powerful machine-learning libraries such as: Sklearn.RandomForest , Sklearn.GradientBoosting, XGBoost, Google TensorFlow and Google TensorFlow LSTM.

    With the models trained with the selection of the best technical indicators, the tool is able to predict trading points (where to buy, where to sell) and send real-time alerts to Telegram or Mail. The points are calculated based on the learning of the correct trading points of the last 2 years (including the change to bear market after the rate hike).

    I think it could be useful to you, to improve, I would like to share it with you, and if you are interested in improving and collaborating I am also willing, and if not file it in the box.

    opened by Leci37 0
Releases(0.5)
Owner
Stox
Making Apps & Modules For The Stockmarket & To Make Life Easier!
Stox
A Python package for time series classification

pyts: a Python package for time series classification pyts is a Python package for time series classification. It aims to make time series classificat

Johann Faouzi 1.4k Jan 01, 2023
2D fluid simulation implementation of Jos Stam paper on real-time fuild dynamics, including some suggested extensions.

Fluid Simulation Usage Download this repo and store it in your computer. Open a terminal and go to the root directory of this folder. Make sure you ha

Mariana Ávalos Arce 5 Dec 02, 2022
Avocado hass time series vs predict price

AVOCADO HASS TIME SERIES VÀ PREDICT PRICE Trước khi vào Heroku muốn giao diện đẹp mọi người chuyển giúp mình theo hình bên dưới https://avocado-hass.h

hieulmsc 3 Dec 18, 2021
Databricks Certified Associate Spark Developer preparation toolkit to setup single node Standalone Spark Cluster along with material in the form of Jupyter Notebooks.

Databricks Certification Spark Databricks Certified Associate Spark Developer preparation toolkit to setup single node Standalone Spark Cluster along

19 Dec 13, 2022
MLReef is an open source ML-Ops platform that helps you collaborate, reproduce and share your Machine Learning work with thousands of other users.

The collaboration platform for Machine Learning MLReef is an open source ML-Ops platform that helps you collaborate, reproduce and share your Machine

MLReef 1.4k Dec 27, 2022
Simple data balancing baselines for worst-group-accuracy benchmarks.

BalancingGroups Code to replicate the experimental results from Simple data balancing baselines achieve competitive worst-group-accuracy. Replicating

Facebook Research 29 Dec 02, 2022
Pyomo is an object-oriented algebraic modeling language in Python for structured optimization problems.

Pyomo is a Python-based open-source software package that supports a diverse set of optimization capabilities for formulating and analyzing optimization models. Pyomo can be used to define symbolic p

Pyomo 1.4k Dec 28, 2022
Free MLOps course from DataTalks.Club

MLOps Zoomcamp Our MLOps Zoomcamp course Sign up here: https://airtable.com/shrCb8y6eTbPKwSTL (it's not automated, you will not receive an email immed

DataTalksClub 4.6k Dec 31, 2022
Mixing up the Invariant Information clustering architecture, with self supervised concepts from SimCLR and MoCo approaches

Self Supervised clusterer Combined IIC, and Moco architectures, with some SimCLR notions, to get state of the art unsupervised clustering while retain

Bendidi Ihab 9 Feb 13, 2022
Apache Liminal is an end-to-end platform for data engineers & scientists, allowing them to build, train and deploy machine learning models in a robust and agile way

Apache Liminals goal is to operationalise the machine learning process, allowing data scientists to quickly transition from a successful experiment to an automated pipeline of model training, validat

The Apache Software Foundation 121 Dec 28, 2022
An easier way to build neural search on the cloud

Jina is geared towards building search systems for any kind of data, including text, images, audio, video and many more. With the modular design & multi-layer abstraction, you can leverage the effici

Jina AI 17k Jan 01, 2023
A simple python program that draws a tree for incrementing values using the Collatz Conjecture.

Collatz Conjecture A simple python program that draws a tree for incrementing values using the Collatz Conjecture. Values which can be edited: Length

davidgasinski 1 Oct 28, 2021
Bayesian optimization based on Gaussian processes (BO-GP) for CFD simulations.

BO-GP Bayesian optimization based on Gaussian processes (BO-GP) for CFD simulations. The BO-GP codes are developed using GPy and GPyOpt. The optimizer

KTH Mechanics 8 Mar 31, 2022
The Simpsons and Machine Learning: What makes an Episode Great?

The Simpsons and Machine Learning: What makes an Episode Great? Check out my Medium article on this! PROBLEM: The Simpsons has had a decline in qualit

1 Nov 02, 2021
Deploy AutoML as a service using Flask

AutoML Service Deploy automated machine learning (AutoML) as a service using Flask, for both pipeline training and pipeline serving. The framework imp

Chris Rawles 221 Nov 04, 2022
Python-based implementations of algorithms for learning on imbalanced data.

ND DIAL: Imbalanced Algorithms Minimalist Python-based implementations of algorithms for imbalanced learning. Includes deep and representational learn

DIAL | Notre Dame 220 Dec 13, 2022
Warren - Stock Price Predictor

Web app to predict closing stock prices in real time using Facebook's Prophet time series algorithm with a multi-variate, single-step time series forecasting strategy.

Kumar Nityan Suman 153 Jan 03, 2023
Diabetes Prediction with Logistic Regression

Diabetes Prediction with Logistic Regression Exploratory Data Analysis Data Preprocessing Model & Prediction Model Evaluation Model Validation: Holdou

AZİZE SULTAN PALALI 2 Oct 23, 2021
A Python implementation of the Robotics Toolbox for MATLAB

Robotics Toolbox for Python A Python implementation of the Robotics Toolbox for MATLAB® GitHub repository Documentation Wiki (examples and details) Sy

Peter Corke 1.2k Jan 07, 2023
A Python toolkit for rule-based/unsupervised anomaly detection in time series

Anomaly Detection Toolkit (ADTK) Anomaly Detection Toolkit (ADTK) is a Python package for unsupervised / rule-based time series anomaly detection. As

Arundo Analytics 888 Dec 30, 2022