A machine learning project that predicts the price of used cars in the UK

Overview

Car Price Prediction

Car Image

Image Credit: AA Cars

Project Overview

  • Scraped 3000 used cars data from AA Cars website using Python and BeautifulSoup.
  • Cleaned the data and built a model to help determine the price of cars on auction
  • Built a flask web app and deploy to cloud

Packages/Tools Used

  • Python Version: 3.9
  • BeautifulSoup
  • Request
  • Numpy
  • Matplotlib
  • Seaborn
  • Scikit-Learn

Data

The data was scraped from AA Cars. The data was scraped from multiple pages from the site and was stored as a csv file. The scraped data contains:

  • Name
  • Price
  • Year
  • Mileage
  • Engine
  • Transmisson

Data Cleaning

The features (columns) contained messy entries and were tidied using some custom functions. The following steps were taken.

  • Removed the duplicate rows in the data because it will affect the analysis.
  • Deleted thhe rows with missing values because they ae not up to 1% of the data.
  • Extracted the manufaturer of each car from the name column
  • Corrected some of the values in the manufacturers column by merging similar value and correcting those wrongly extracted.
  • Removed the pounds symbol and the comma in the values of the price column
  • Created an age column by substacting the values in the year column fom the current year, 2021. This is an easier column to work with.
  • Removed the commas, space and miles input in all the values of the mileage columns.
    • Corrected some of the values in the engine and transmission columns by merging similar value and correcting those wrongly extracted.

Exploratory Data Analysis

  • The count of the number of cars owned by each car manufacturer Car manufacturer distribution

  • The count of the number of cars from the different years Year distribution

  • The count of the number of cars with the diffrent car engine types Car engine distribution

  • The count of the number of cars with different car transmission types Car transmission distribution

  • The word cloud of all car manufacturers.

Car manufacturer wordcloud

Model Building

  • The 'name' and 'year' column were dropped because they are irrelevant.
  • The categorical features (name, colour and transmission) were transformed into numerical data and I scaled all the feature values to make all of them be in the same range
  • Linear Regression, Ridge Regression, Random Forest Regressor, Ada Boost Regressor and Support Vector Regressor models were all built.
  • Root mean squared error (RMSE) which is the square root of the sum of the difference between the true value and the predicted value was the metric used to evaluate the performance of the model.
  • The CatBoost Regressor model has the best performance and it was hypertuned using GridSearchCV to improve the performance.
  • The model was tested on new data and it gave a good output.

A flask web app is currently under construction

NB: I am open to constructive criticisms about this project

Owner
Victor Umunna
Victor Umunna
scikit-learn is a python module for machine learning built on top of numpy / scipy

About scikit-learn is a python module for machine learning built on top of numpy / scipy. The purpose of the scikit-learn-tutorial subproject is to le

Gael Varoquaux 122 Dec 12, 2022
A machine learning model for Covid case prediction

CovidcasePrediction A machine learning model for Covid case prediction Problem Statement Using regression algorithms we can able to track the active c

VijayAadhithya2019rit 1 Feb 02, 2022
inding a method to objectively quantify skill versus chance in games, using reinforcement learning

Skill-vs-chance-games-analysis - Finding a method to objectively quantify skill versus chance in games, using reinforcement learning

Marcus Chiam 4 Nov 19, 2022
Decentralized deep learning in PyTorch. Built to train models on thousands of volunteers across the world.

Hivemind: decentralized deep learning in PyTorch Hivemind is a PyTorch library to train large neural networks across the Internet. Its intended usage

1.3k Jan 08, 2023
Causal Inference and Machine Learning in Practice with EconML and CausalML: Industrial Use Cases at Microsoft, TripAdvisor, Uber

Causal Inference and Machine Learning in Practice with EconML and CausalML: Industrial Use Cases at Microsoft, TripAdvisor, Uber

EconML/CausalML KDD 2021 Tutorial 124 Dec 28, 2022
Automatically create Faiss knn indices with the most optimal similarity search parameters.

It selects the best indexing parameters to achieve the highest recalls given memory and query speed constraints.

Criteo 419 Jan 01, 2023
Real-time stream processing for python

Streamz Streamz helps you build pipelines to manage continuous streams of data. It is simple to use in simple cases, but also supports complex pipelin

Python Streamz 1.1k Dec 28, 2022
Auto updating website that tracks closed & open issues/PRs on scikit-learn/scikit-learn.

Repository Status for Scikit-learn Live webpage Auto updating website that tracks closed & open issues/PRs on scikit-learn/scikit-learn. Running local

Thomas J. Fan 6 Dec 27, 2022
Python Extreme Learning Machine (ELM) is a machine learning technique used for classification/regression tasks.

Python Extreme Learning Machine (ELM) Python Extreme Learning Machine (ELM) is a machine learning technique used for classification/regression tasks.

Augusto Almeida 84 Nov 25, 2022
💀mummify: a version control tool for machine learning

mummify is a version control tool for machine learning. It's simple, fast, and designed for model prototyping.

Max Humber 43 Jul 09, 2022
onelearn: Online learning in Python

onelearn: Online learning in Python Documentation | Reproduce experiments | onelearn stands for ONE-shot LEARNning. It is a small python package for o

15 Nov 06, 2022
End to End toy example of MLOps

churn_model MLOps Toy Example End to End You might find below links useful Connect VSCode to Git MLFlow Port Heroku App Project Organization ├── LICEN

Ashish Tele 6 Feb 06, 2022
pymc-learn: Practical Probabilistic Machine Learning in Python

pymc-learn: Practical Probabilistic Machine Learning in Python Contents: Github repo What is pymc-learn? Quick Install Quick Start Index What is pymc-

pymc-learn 196 Dec 07, 2022
This handbook accompanies the course: Machine Learning with Hung-Yi Lee

This handbook accompanies the course: Machine Learning with Hung-Yi Lee

RenChu Wang 472 Dec 31, 2022
Extended Isolation Forest for Anomaly Detection

Table of contents Extended Isolation Forest Summary Motivation Isolation Forest Extension The Code Installation Requirements Use Citation Releases Ext

Sahand Hariri 377 Dec 18, 2022
To-Be is a machine learning challenge on CodaLab Platform about Mortality Prediction

To-Be is a machine learning challenge on CodaLab Platform about Mortality Prediction. The challenge aims to adress the problems of medical imbalanced data classification.

Marwan Mashra 1 Jan 31, 2022
Kats is a toolkit to analyze time series data, a lightweight, easy-to-use, and generalizable framework to perform time series analysis.

Kats, a kit to analyze time series data, a lightweight, easy-to-use, generalizable, and extendable framework to perform time series analysis, from understanding the key statistics and characteristics

Facebook Research 4.1k Dec 29, 2022
Neural Machine Translation (NMT) tutorial with OpenNMT-py

Neural Machine Translation (NMT) tutorial with OpenNMT-py. Data preprocessing, model training, evaluation, and deployment.

Yasmin Moslem 29 Jan 09, 2023
🚪✊Knock Knock: Get notified when your training ends with only two additional lines of code

Knock Knock A small library to get a notification when your training is complete or when it crashes during the process with two additional lines of co

Hugging Face 2.5k Jan 07, 2023
List of Data Science Cheatsheets to rule the world

Data Science Cheatsheets List of Data Science Cheatsheets to rule the world. Table of Contents Business Science Business Science Problem Framework Dat

Favio André Vázquez 11.7k Dec 30, 2022