pywFM is a Python wrapper for Steffen Rendle's factorization machines library libFM

Related tags

Machine LearningpywFM
Overview

pywFM

pywFM is a Python wrapper for Steffen Rendle's libFM. libFM is a Factorization Machine library:

Factorization machines (FM) are a generic approach that allows to mimic most factorization models by feature engineering. This way, factorization machines combine the generality of feature engineering with the superiority of factorization models in estimating interactions between categorical variables of large domain. libFM is a software implementation for factorization machines that features stochastic gradient descent (SGD) and alternating least squares (ALS) optimization as well as Bayesian inference using Markov Chain Monte Carlo (MCMC).

For more information regarding Factorization machines and libFM, read Steffen Rendle's paper: Factorization Machines with libFM, in ACM Trans. Intell. Syst. Technol., 3(3), May. 2012

Don't forget to acknowledge libFM (i.e. cite the paper Factorization Machines with libFM) if you publish results produced with this software.

Motivation

While using Python implementations of Factorization Machines, I felt that the current implementations (pyFM and fastFM) had many flaws. Then I though, why re-invent the wheel? Why not use the original libFM?

Sure, it's not Python native yada yada ... But at least we have a bulletproof, battle-tested implementation that we can guide ourselves with.

Installing

First you have to clone and compile libFM repository and set an environment variable to the libFM bin folder:

git clone https://github.com/srendle/libfm /home/libfm
cd /home/libfm/
# taking advantage of a bug to allow us to save model #ShameShame
git reset --hard 91f8504a15120ef6815d6e10cc7dee42eebaab0f
make all
export LIBFM_PATH=/home/libfm/bin/

Make sure you are compiling source from libfm repository and at this specific commit, since pywFM needs the save_model. Beware that the installers and source code in libfm.org are both dated before this commit. I know this is extremely hacky, but since a fix was deployed it only allows the save_model option for SGD or ALS. I don't know why exactly, because it was working well before.

If you use Jupyter take a look at the following issue for some extra notes on getting libfm to work.

Then, install pywFM using pip:

pip install pywFM

Binary installers for the latest released version are available at the Python package index.

Dependencies

  • numpy
  • scipy
  • sklearn
  • pandas

Example

Very simple example taken from Steffen Rendle's paper: Factorization Machines with libFM.

import pywFM
import numpy as np
import pandas as pd

features = np.matrix([
#     Users  |     Movies     |    Movie Ratings   | Time | Last Movies Rated
#    A  B  C | TI  NH  SW  ST | TI   NH   SW   ST  |      | TI  NH  SW  ST
    [1, 0, 0,  1,  0,  0,  0,   0.3, 0.3, 0.3, 0,     13,   0,  0,  0,  0 ],
    [1, 0, 0,  0,  1,  0,  0,   0.3, 0.3, 0.3, 0,     14,   1,  0,  0,  0 ],
    [1, 0, 0,  0,  0,  1,  0,   0.3, 0.3, 0.3, 0,     16,   0,  1,  0,  0 ],
    [0, 1, 0,  0,  0,  1,  0,   0,   0,   0.5, 0.5,   5,    0,  0,  0,  0 ],
    [0, 1, 0,  0,  0,  0,  1,   0,   0,   0.5, 0.5,   8,    0,  0,  1,  0 ],
    [0, 0, 1,  1,  0,  0,  0,   0.5, 0,   0.5, 0,     9,    0,  0,  0,  0 ],
    [0, 0, 1,  0,  0,  1,  0,   0.5, 0,   0.5, 0,     12,   1,  0,  0,  0 ]
])
target = [5, 3, 1, 4, 5, 1, 5]

fm = pywFM.FM(task='regression', num_iter=5)

# split features and target for train/test
# first 5 are train, last 2 are test
model = fm.run(features[:5], target[:5], features[5:], target[5:])
print(model.predictions)
# you can also get the model weights
print(model.weights)

You can also use numpy's array, sklearn's sparse_matrix, and even pandas' DataFrame as features input.

Prediction on new data

Current approach is to send test data as x_test, y_test in run method call. libfm uses the test values to output some results regarding its predictions. They are not used when training the model. y_test can be set as dummy value and just collect the predictions with model.predictions (also disregard the prediction statistics since those will be wrong). For more info check libfm manual.

Running against a new dataset using something like a predict method is not supported yet. Pending feature request: https://github.com/jfloff/pywFM/issues/7

Feel free to PR that change ;)

Usage

Don't forget to acknowledge libFM (i.e. cite the paper Factorization Machines with libFM) if you publish results produced with this software.

FM: Class that wraps libFM parameters. For more information read libFM manual
Parameters
----------
task : string, MANDATORY
        regression: for regression
        classification: for binary classification
num_iter: int, optional
    Number of iterations
    Defaults to 100
init_stdev : double, optional
    Standard deviation for initialization of 2-way factors
    Defaults to 0.1
k0 : bool, optional
    Use bias.
    Defaults to True
k1 : bool, optional
    Use 1-way interactions.
    Defaults to True
k2 : int, optional
    Dimensionality of 2-way interactions.
    Defaults to 8
learning_method: string, optional
    sgd: parameter learning with SGD
    sgda: parameter learning with adpative SGD
    als: parameter learning with ALS
    mcmc: parameter learning with MCMC
    Defaults to 'mcmc'
learn_rate: double, optional
    Learning rate for SGD
    Defaults to 0.1
r0_regularization: int, optional
    bias regularization for SGD and ALS
    Defaults to 0
r1_regularization: int, optional
    1-way regularization for SGD and ALS
    Defaults to 0
r2_regularization: int, optional
    2-way regularization for SGD and ALS
    Defaults to 0
rlog: bool, optional
    Enable/disable rlog output
    Defaults to True.
verbose: bool, optional
    How much infos to print
    Defaults to False.
seed: int, optional
    seed used to reproduce the results
    Defaults to None.
silent: bool, optional
    Completly silences all libFM output
    Defaults to False.
temp_path: string, optional
    Sets path for libFM temporary files. Usefull when dealing with large data.
    Defaults to None (default mkstemp behaviour)
FM.run: run factorization machine model against train and test data

Parameters
----------
x_train : {array-like, matrix}, shape = [n_train, n_features]
    Training data
y_train : numpy array of shape [n_train]
    Target values
x_test: {array-like, matrix}, shape = [n_test, n_features]
    Testing data
y_test : numpy array of shape [n_test]
    Testing target values
x_validation_set: optional, {array-like, matrix}, shape = [n_train, n_features]
    Validation data (only for SGDA)
y_validation_set: optional, numpy array of shape [n_train]
    Validation target data (only for SGDA)

Return
-------
Returns `namedtuple` with the following properties:

predictions: array [n_samples of x_test]
   Predicted target values per element in x_test.
global_bias: float
    If k0 is True, returns the model's global bias w0
weights: array [n_features]
    If k1 is True, returns the model's weights for each features Wj
pairwise_interactions: numpy matrix [n_features x k2]
    Matrix with pairwise interactions Vj,f
rlog: pandas dataframe [nrow = num_iter]
    `pandas` DataFrame with measurements about each iteration

Docker

This repository includes Dockerfile for development and for running pywFM.

  • Run pywFM examples (Dockerfile): if you are only interested in running the examples, you can use the pre-build image availabe in Docker Hub:
# to run examples/simple.py (the one in this README).
docker run --rm -v "$(pwd)":/home/pywfm -w /home/pywfm -ti jfloff/pywfm python examples/simple.py
  • Development of pywFM (Dockerfile): useful if you want to make changes to the repo. Dockerfile defaults to bash.
# to build image
docker build --rm=true -t jfloff/pywfm-dev .
# to run image
docker run --rm -v "$(pwd)":/home/pywfm-dev -w /home/pywfm-dev -ti jfloff/pywfm-dev

Future work

  • Improve the save_model / load_model so we can have a more defined init-fit-predict cycle (perhaps we could inherit from sklearn.BaseEstimator)
  • Can we contribute to libFM repo so save_model is enabled for all learning methods (namely MCMC)?
  • Look up into shared library solution to improve I/O overhead

I'm no factorization machine expert, so this library was just an effort to have libFM as fast as possible in Python. Feel free to suggest features, enhancements; to point out issues; and of course, to post PRs.

License

MIT (see LICENSE.txt file)

database for artificial intelligence/machine learning data

AIDB v0.0.1 database for artificial intelligence/machine learning data Overview aidb is a database designed for large dataset for machine learning pro

Aarush Gupta 1 Oct 24, 2021
BASTA: The BAyesian STellar Algorithm

BASTA: BAyesian STellar Algorithm Current stable version: v1.0 Important note: BASTA is developed for Python 3.8, but Python 3.7 should work as well.

BASTA team 16 Nov 15, 2022
Code for the TCAV ML interpretability project

Interpretability Beyond Feature Attribution: Quantitative Testing with Concept Activation Vectors (TCAV) Been Kim, Martin Wattenberg, Justin Gilmer, C

552 Dec 27, 2022
A scikit-learn based module for multi-label et. al. classification

scikit-multilearn scikit-multilearn is a Python module capable of performing multi-label learning tasks. It is built on-top of various scientific Pyth

802 Jan 01, 2023
Bodywork deploys machine learning projects developed in Python, to Kubernetes.

Bodywork deploys machine learning projects developed in Python, to Kubernetes. It helps you to: serve models as microservices execute batch jobs run r

Bodywork Machine Learning 409 Jan 01, 2023
To-Be is a machine learning challenge on CodaLab Platform about Mortality Prediction

To-Be is a machine learning challenge on CodaLab Platform about Mortality Prediction. The challenge aims to adress the problems of medical imbalanced data classification.

Marwan Mashra 1 Jan 31, 2022
Repositório para o #alurachallengedatascience1

1° Challenge de Dados - Alura A Alura Voz é uma empresa de telecomunicação que nos contratou para atuar como cientistas de dados na equipe de vendas.

Sthe Monica 16 Nov 10, 2022
A Microsoft Azure Web App project named Covid 19 Predictor using Machine learning Model

A Microsoft Azure Web App project named Covid 19 Predictor using Machine learning Model (Random Forest Classifier Model ) that helps the user to identify whether someone is showing positive Covid sym

Priyansh Sharma 2 Oct 06, 2022
CD) in machine learning projectsImplementing continuous integration & delivery (CI/CD) in machine learning projects

CML with cloud compute This repository contains a sample project using CML with Terraform (via the cml-runner function) to launch an AWS EC2 instance

Iterative 19 Oct 03, 2022
Python Machine Learning Jupyter Notebooks (ML website)

Python Machine Learning Jupyter Notebooks (ML website) Dr. Tirthajyoti Sarkar, Fremont, California (Please feel free to connect on LinkedIn here) Also

Tirthajyoti Sarkar 2.6k Jan 03, 2023
Reproducibility and Replicability of Web Measurement Studies

Reproducibility and Replicability of Web Measurement Studies This repository holds additional material to the paper "Reproducibility and Replicability

6 Dec 31, 2022
A Tools that help Data Scientists and ML engineers train and deploy ML models.

Domino Research This repo contains projects under active development by the Domino R&D team. We build tools that help Data Scientists and ML engineers

Domino Data Lab 73 Oct 17, 2022
Project to deploy a machine learning model based on Titanic dataset from Kaggle

kaggle_titanic_deploy Project to deploy a machine learning model based on Titanic dataset from Kaggle In this project we used the Titanic dataset from

Vivian Yamassaki 8 May 23, 2022
slim-python is a package to learn customized scoring systems for decision-making problems.

slim-python is a package to learn customized scoring systems for decision-making problems. These are simple decision aids that let users make yes-no p

Berk Ustun 37 Nov 02, 2022
Getting Profit and Loss Make Easy From Binance

Getting Profit and Loss Make Easy From Binance I have been in Binance Automated Trading for some time and have generated a lot of transaction records,

17 Dec 21, 2022
An MLOps framework to package, deploy, monitor and manage thousands of production machine learning models

Seldon Core: Blazing Fast, Industry-Ready ML An open source platform to deploy your machine learning models on Kubernetes at massive scale. Overview S

Seldon 3.5k Jan 01, 2023
A python fast implementation of the famous SVD algorithm popularized by Simon Funk during Netflix Prize

⚡ funk-svd funk-svd is a Python 3 library implementing a fast version of the famous SVD algorithm popularized by Simon Funk during the Neflix Prize co

Geoffrey Bolmier 171 Dec 19, 2022
A toolkit for making real world machine learning and data analysis applications in C++

dlib C++ library Dlib is a modern C++ toolkit containing machine learning algorithms and tools for creating complex software in C++ to solve real worl

Davis E. King 11.6k Jan 02, 2023
Convoys is a simple library that fits a few statistical model useful for modeling time-lagged conversions.

Convoys is a simple library that fits a few statistical model useful for modeling time-lagged conversions. There is a lot more info if you head over to the documentation. You can also take a look at

Better 240 Dec 26, 2022
Python library which makes it possible to dynamically mask/anonymize data using JSON string or python dict rules in a PySpark environment.

pyspark-anonymizer Python library which makes it possible to dynamically mask/anonymize data using JSON string or python dict rules in a PySpark envir

6 Jun 30, 2022