pywFM is a Python wrapper for Steffen Rendle's factorization machines library libFM

Related tags

Machine LearningpywFM
Overview

pywFM

pywFM is a Python wrapper for Steffen Rendle's libFM. libFM is a Factorization Machine library:

Factorization machines (FM) are a generic approach that allows to mimic most factorization models by feature engineering. This way, factorization machines combine the generality of feature engineering with the superiority of factorization models in estimating interactions between categorical variables of large domain. libFM is a software implementation for factorization machines that features stochastic gradient descent (SGD) and alternating least squares (ALS) optimization as well as Bayesian inference using Markov Chain Monte Carlo (MCMC).

For more information regarding Factorization machines and libFM, read Steffen Rendle's paper: Factorization Machines with libFM, in ACM Trans. Intell. Syst. Technol., 3(3), May. 2012

Don't forget to acknowledge libFM (i.e. cite the paper Factorization Machines with libFM) if you publish results produced with this software.

Motivation

While using Python implementations of Factorization Machines, I felt that the current implementations (pyFM and fastFM) had many flaws. Then I though, why re-invent the wheel? Why not use the original libFM?

Sure, it's not Python native yada yada ... But at least we have a bulletproof, battle-tested implementation that we can guide ourselves with.

Installing

First you have to clone and compile libFM repository and set an environment variable to the libFM bin folder:

git clone https://github.com/srendle/libfm /home/libfm
cd /home/libfm/
# taking advantage of a bug to allow us to save model #ShameShame
git reset --hard 91f8504a15120ef6815d6e10cc7dee42eebaab0f
make all
export LIBFM_PATH=/home/libfm/bin/

Make sure you are compiling source from libfm repository and at this specific commit, since pywFM needs the save_model. Beware that the installers and source code in libfm.org are both dated before this commit. I know this is extremely hacky, but since a fix was deployed it only allows the save_model option for SGD or ALS. I don't know why exactly, because it was working well before.

If you use Jupyter take a look at the following issue for some extra notes on getting libfm to work.

Then, install pywFM using pip:

pip install pywFM

Binary installers for the latest released version are available at the Python package index.

Dependencies

  • numpy
  • scipy
  • sklearn
  • pandas

Example

Very simple example taken from Steffen Rendle's paper: Factorization Machines with libFM.

import pywFM
import numpy as np
import pandas as pd

features = np.matrix([
#     Users  |     Movies     |    Movie Ratings   | Time | Last Movies Rated
#    A  B  C | TI  NH  SW  ST | TI   NH   SW   ST  |      | TI  NH  SW  ST
    [1, 0, 0,  1,  0,  0,  0,   0.3, 0.3, 0.3, 0,     13,   0,  0,  0,  0 ],
    [1, 0, 0,  0,  1,  0,  0,   0.3, 0.3, 0.3, 0,     14,   1,  0,  0,  0 ],
    [1, 0, 0,  0,  0,  1,  0,   0.3, 0.3, 0.3, 0,     16,   0,  1,  0,  0 ],
    [0, 1, 0,  0,  0,  1,  0,   0,   0,   0.5, 0.5,   5,    0,  0,  0,  0 ],
    [0, 1, 0,  0,  0,  0,  1,   0,   0,   0.5, 0.5,   8,    0,  0,  1,  0 ],
    [0, 0, 1,  1,  0,  0,  0,   0.5, 0,   0.5, 0,     9,    0,  0,  0,  0 ],
    [0, 0, 1,  0,  0,  1,  0,   0.5, 0,   0.5, 0,     12,   1,  0,  0,  0 ]
])
target = [5, 3, 1, 4, 5, 1, 5]

fm = pywFM.FM(task='regression', num_iter=5)

# split features and target for train/test
# first 5 are train, last 2 are test
model = fm.run(features[:5], target[:5], features[5:], target[5:])
print(model.predictions)
# you can also get the model weights
print(model.weights)

You can also use numpy's array, sklearn's sparse_matrix, and even pandas' DataFrame as features input.

Prediction on new data

Current approach is to send test data as x_test, y_test in run method call. libfm uses the test values to output some results regarding its predictions. They are not used when training the model. y_test can be set as dummy value and just collect the predictions with model.predictions (also disregard the prediction statistics since those will be wrong). For more info check libfm manual.

Running against a new dataset using something like a predict method is not supported yet. Pending feature request: https://github.com/jfloff/pywFM/issues/7

Feel free to PR that change ;)

Usage

Don't forget to acknowledge libFM (i.e. cite the paper Factorization Machines with libFM) if you publish results produced with this software.

FM: Class that wraps libFM parameters. For more information read libFM manual
Parameters
----------
task : string, MANDATORY
        regression: for regression
        classification: for binary classification
num_iter: int, optional
    Number of iterations
    Defaults to 100
init_stdev : double, optional
    Standard deviation for initialization of 2-way factors
    Defaults to 0.1
k0 : bool, optional
    Use bias.
    Defaults to True
k1 : bool, optional
    Use 1-way interactions.
    Defaults to True
k2 : int, optional
    Dimensionality of 2-way interactions.
    Defaults to 8
learning_method: string, optional
    sgd: parameter learning with SGD
    sgda: parameter learning with adpative SGD
    als: parameter learning with ALS
    mcmc: parameter learning with MCMC
    Defaults to 'mcmc'
learn_rate: double, optional
    Learning rate for SGD
    Defaults to 0.1
r0_regularization: int, optional
    bias regularization for SGD and ALS
    Defaults to 0
r1_regularization: int, optional
    1-way regularization for SGD and ALS
    Defaults to 0
r2_regularization: int, optional
    2-way regularization for SGD and ALS
    Defaults to 0
rlog: bool, optional
    Enable/disable rlog output
    Defaults to True.
verbose: bool, optional
    How much infos to print
    Defaults to False.
seed: int, optional
    seed used to reproduce the results
    Defaults to None.
silent: bool, optional
    Completly silences all libFM output
    Defaults to False.
temp_path: string, optional
    Sets path for libFM temporary files. Usefull when dealing with large data.
    Defaults to None (default mkstemp behaviour)
FM.run: run factorization machine model against train and test data

Parameters
----------
x_train : {array-like, matrix}, shape = [n_train, n_features]
    Training data
y_train : numpy array of shape [n_train]
    Target values
x_test: {array-like, matrix}, shape = [n_test, n_features]
    Testing data
y_test : numpy array of shape [n_test]
    Testing target values
x_validation_set: optional, {array-like, matrix}, shape = [n_train, n_features]
    Validation data (only for SGDA)
y_validation_set: optional, numpy array of shape [n_train]
    Validation target data (only for SGDA)

Return
-------
Returns `namedtuple` with the following properties:

predictions: array [n_samples of x_test]
   Predicted target values per element in x_test.
global_bias: float
    If k0 is True, returns the model's global bias w0
weights: array [n_features]
    If k1 is True, returns the model's weights for each features Wj
pairwise_interactions: numpy matrix [n_features x k2]
    Matrix with pairwise interactions Vj,f
rlog: pandas dataframe [nrow = num_iter]
    `pandas` DataFrame with measurements about each iteration

Docker

This repository includes Dockerfile for development and for running pywFM.

  • Run pywFM examples (Dockerfile): if you are only interested in running the examples, you can use the pre-build image availabe in Docker Hub:
# to run examples/simple.py (the one in this README).
docker run --rm -v "$(pwd)":/home/pywfm -w /home/pywfm -ti jfloff/pywfm python examples/simple.py
  • Development of pywFM (Dockerfile): useful if you want to make changes to the repo. Dockerfile defaults to bash.
# to build image
docker build --rm=true -t jfloff/pywfm-dev .
# to run image
docker run --rm -v "$(pwd)":/home/pywfm-dev -w /home/pywfm-dev -ti jfloff/pywfm-dev

Future work

  • Improve the save_model / load_model so we can have a more defined init-fit-predict cycle (perhaps we could inherit from sklearn.BaseEstimator)
  • Can we contribute to libFM repo so save_model is enabled for all learning methods (namely MCMC)?
  • Look up into shared library solution to improve I/O overhead

I'm no factorization machine expert, so this library was just an effort to have libFM as fast as possible in Python. Feel free to suggest features, enhancements; to point out issues; and of course, to post PRs.

License

MIT (see LICENSE.txt file)

Anytime Learning At Macroscale

On Anytime Learning At Macroscale Learning from sequential data dumps (key) Requirements Python 3.7 Pytorch 1.9.0 Hydra 1.1.0 (pip install hydra-core

Meta Research 8 Mar 29, 2022
BioPy is a collection (in-progress) of biologically-inspired algorithms written in Python

BioPy is a collection (in-progress) of biologically-inspired algorithms written in Python. Some of the algorithms included are mor

Jared M. Smith 40 Aug 26, 2022
This is a Machine Learning model which predicts the presence of Diabetes in Patients

Diabetes Disease Prediction This is a machine Learning mode which tries to determine if a person has a diabetes or not. Data The dataset is in comma s

Edem Gold 4 Mar 16, 2022
A library to generate synthetic time series data by easy-to-use factors and generator

timeseries-generator This repository consists of a python packages that generates synthetic time series dataset in a generic way (under /timeseries_ge

Nike Inc. 87 Dec 20, 2022
A simple python program which predicts the success of a movie based on it's type, actor, actress and director

Movie-Success-Prediction A simple python program which predicts the success of a movie based on it's type, actor, actress and director. The program us

Mahalinga Prasad R N 1 Dec 17, 2021
Applied Machine Learning for Graduate Program in Computer Science (PPGCC)

Applied Machine Learning for Graduate Program in Computer Science (PPGCC) - Federal University of Santa Catarina

Jônatas Negri Grandini 1 Dec 22, 2021
The easy way to combine mlflow, hydra and optuna into one machine learning pipeline.

mlflow_hydra_optuna_the_easy_way The easy way to combine mlflow, hydra and optuna into one machine learning pipeline. Objective TODO Usage 1. build do

shibuiwilliam 9 Sep 09, 2022
Skoot is a lightweight python library of machine learning transformer classes that interact with scikit-learn and pandas.

Skoot is a lightweight python library of machine learning transformer classes that interact with scikit-learn and pandas. Its objective is to ex

Taylor G Smith 54 Aug 20, 2022
CobraML: Completely Customizable A python ML library designed to give the end user full control

CobraML: Completely Customizable What is it? CobraML is a python library built on both numpy and numba. Unlike other ML libraries CobraML gives the us

Sriram Govindan 14 Dec 19, 2021
[HELP REQUESTED] Generalized Additive Models in Python

pyGAM Generalized Additive Models in Python. Documentation Official pyGAM Documentation: Read the Docs Building interpretable models with Generalized

daniel servén 747 Jan 05, 2023
Databricks Certified Associate Spark Developer preparation toolkit to setup single node Standalone Spark Cluster along with material in the form of Jupyter Notebooks.

Databricks Certification Spark Databricks Certified Associate Spark Developer preparation toolkit to setup single node Standalone Spark Cluster along

19 Dec 13, 2022
30 Days Of Machine Learning Using Pytorch

Objective of the repository is to learn and build machine learning models using Pytorch. 30DaysofML Using Pytorch

Mayur 119 Nov 24, 2022
A chain of stores, 10 different stores and 50 different requests a 3-month demand forecast for its product.

Demand-Forecasting Business Problem A chain of stores, 10 different stores and 50 different requests a 3-month demand forecast for its product.

Ayşe Nur Türkaslan 3 Mar 06, 2022
This machine-learning algorithm takes in data from the last 60 days and tries to predict tomorrow's price of any crypto you ask it.

Crypto-Currency-Predictor This machine-learning algorithm takes in data from the last 60 days and tries to predict tomorrow's price of any crypto you

Hazim Arafa 6 Dec 04, 2022
UpliftML: A Python Package for Scalable Uplift Modeling

UpliftML is a Python package for scalable unconstrained and constrained uplift modeling from experimental data. To accommodate working with big data, the package uses PySpark and H2O models as base l

Booking.com 254 Dec 31, 2022
Predicting India’s COVID-19 Third Wave with LSTM

Predicting India’s COVID-19 Third Wave with LSTM Complete project of predicting new COVID-19 cases in the next 90 days with LSTM India is seeing a ste

Samrat Dutta 4 Jan 27, 2022
A python fast implementation of the famous SVD algorithm popularized by Simon Funk during Netflix Prize

⚡ funk-svd funk-svd is a Python 3 library implementing a fast version of the famous SVD algorithm popularized by Simon Funk during the Neflix Prize co

Geoffrey Bolmier 171 Dec 19, 2022
A Python package for time series classification

pyts: a Python package for time series classification pyts is a Python package for time series classification. It aims to make time series classificat

Johann Faouzi 1.4k Jan 01, 2023
Home repository for the Regularized Greedy Forest (RGF) library. It includes original implementation from the paper and multithreaded one written in C++, along with various language-specific wrappers.

Regularized Greedy Forest Regularized Greedy Forest (RGF) is a tree ensemble machine learning method described in this paper. RGF can deliver better r

RGF-team 363 Dec 14, 2022
ETNA is an easy-to-use time series forecasting framework.

ETNA is an easy-to-use time series forecasting framework. It includes built in toolkits for time series preprocessing, feature generation, a variety of predictive models with unified interface - from

Tinkoff.AI 674 Jan 07, 2023