A python fast implementation of the famous SVD algorithm popularized by Simon Funk during Netflix Prize

Overview

funk-svd Build Status License

funk-svd is a Python 3 library implementing a fast version of the famous SVD algorithm popularized by Simon Funk during the Neflix Prize contest.

Numba is used to speed up our algorithm, enabling us to run over 10 times faster than Surprise's Cython implementation (cf. benchmark notebook).

Movielens 20M RMSE MAE Time
Surprise 0.88 0.68 10 min 40 sec
Funk-svd 0.88 0.68 42 sec

Installation

Run pip install git+https://github.com/gbolmier/funk-svd in your terminal.

Contributing

All contributions, bug reports, bug fixes, enhancements, and ideas are welcome.

A detailed overview on how to contribute can be found in the contributor guide.

Quick example

run_experiment.py:

>>> from funk_svd.dataset import fetch_ml_ratings
>>> from funk_svd import SVD

>>> from sklearn.metrics import mean_absolute_error


>>> df = fetch_ml_ratings(variant='100k')

>>> train = df.sample(frac=0.8, random_state=7)
>>> val = df.drop(train.index.tolist()).sample(frac=0.5, random_state=8)
>>> test = df.drop(train.index.tolist()).drop(val.index.tolist())

>>> svd = SVD(lr=0.001, reg=0.005, n_epochs=100, n_factors=15,
...           early_stopping=True, shuffle=False, min_rating=1, max_rating=5)

>>> svd.fit(X=train, X_val=val)
Preprocessing data...

Epoch 1/...

>>> pred = svd.predict(test)
>>> mae = mean_absolute_error(test['rating'], pred)

>>> print(f'Test MAE: {mae:.2f}')
Test MAE: 0.75

Funk SVD for recommendation in a nutshell

We have a huge sparse matrix:

storing known ratings for a set of users and items:

The idea is to estimate unknown ratings by factorizing the rating matrix into two smaller matrices representing user and item characteristics:

We call these two matrices users and items latent factors. Then, by applying the dot product between both matrices we can reconstruct our rating matrix. The trick is that the empty values will now contain estimated ratings.

In order to get more accurate results, the global average rating as well as the user and item biases are used in addition:

where K stands for known ratings.

Then, we can estimate any rating by applying:

The learning step consists in performing the SGD algorithm where for each known rating the biases and latent factors are updated as follows:

where alpha is the learning rate and lambda is the regularization term.

References

License

MIT license, see here.

Owner
Geoffrey Bolmier
Geoffrey Bolmier
机器学习检测webshell

ai-webshell-detect 机器学习检测webshell,利用textcnn+简单二分类网络,基于keras,花了七天 检测原理: 从文件熵 文件长度 文件语句提取出特征,然后文件熵与长度送入二分类网络,文件语句送入textcnn 项目原理,介绍,怎么做出来的

Huoji's 56 Dec 14, 2022
2021 Machine Learning Security Evasion Competition

2021 Machine Learning Security Evasion Competition This repository contains code samples for the 2021 Machine Learning Security Evasion Competition. P

Fabrício Ceschin 8 May 01, 2022
Code base of KU AIRS: SPARK Autonomous Vehicle Team

KU AIRS: SPARK Autonomous Vehicle Project Check this link for the blog post describing this project and the video of SPARK in simulation and on parkou

Mehmet Enes Erciyes 1 Nov 23, 2021
A data preprocessing and feature engineering script for a machine learning pipeline is prepared.

FEATURE ENGINEERING Business Problem: A data preprocessing and feature engineering script for a machine learning pipeline needs to be prepared. It is

Pinar Oner 7 Dec 18, 2021
The project's goal is to show a real world application of image segmentation using k means algorithm

The project's goal is to show a real world application of image segmentation using k means algorithm

2 Jan 22, 2022
Decision Weights in Prospect Theory

Decision Weights in Prospect Theory It's clear that humans are irrational, but how irrational are they? After some research into behavourial economics

Cameron Davidson-Pilon 32 Nov 08, 2021
A naive Bayes model for cancer classification using a set of documents

Naivebayes text classifcation model for cancer and noncancer documents Author: Alex King Purpose Requirements/files included How to use 1. Purpose The

Alex W King 1 Nov 24, 2021
Merlion: A Machine Learning Framework for Time Series Intelligence

Merlion is a Python library for time series intelligence. It provides an end-to-end machine learning framework that includes loading and transforming data, building and training models, post-processi

Salesforce 2.8k Jan 05, 2023
Uplift modeling and causal inference with machine learning algorithms

Disclaimer This project is stable and being incubated for long-term support. It may contain new experimental code, for which APIs are subject to chang

Uber Open Source 3.7k Jan 07, 2023
This is a Machine Learning model which predicts the presence of Diabetes in Patients

Diabetes Disease Prediction This is a machine Learning mode which tries to determine if a person has a diabetes or not. Data The dataset is in comma s

Edem Gold 4 Mar 16, 2022
A classification model capable of accurately predicting the price of secondhand cars

The purpose of this project is create a classification model capable of accurately predicting the price of secondhand cars. The data used for model building is open source and has been added to this

Akarsh Singh 2 Sep 13, 2022
A modular active learning framework for Python

Modular Active Learning framework for Python3 Page contents Introduction Active learning from bird's-eye view modAL in action From zero to one in a fe

modAL 1.9k Dec 31, 2022
Machine Learning approach for quantifying detector distortion fields

DistortionML Machine Learning approach for quantifying detector distortion fields. This project is a feasibility study for training a surrogate model

Joel Bernier 1 Nov 05, 2021
Bayesian optimization in JAX

Bayesian optimization in JAX

Predictive Intelligence Lab 26 May 11, 2022
SynapseML - an open source library to simplify the creation of scalable machine learning pipelines

Synapse Machine Learning SynapseML (previously MMLSpark) is an open source library to simplify the creation of scalable machine learning pipelines. Sy

Microsoft 3.9k Dec 30, 2022
Scikit-Learn useful pre-defined Pipelines Hub

Scikit-Pipes Scikit-Learn useful pre-defined Pipelines Hub Usage: Install scikit-pipes It's advised to install sklearn-genetic using a virtual env, in

Rodrigo Arenas 1 Apr 26, 2022
LibRerank is a toolkit for re-ranking algorithms. There are a number of re-ranking algorithms, such as PRM, DLCM, GSF, miDNN, SetRank, EGRerank, Seq2Slate.

LibRerank LibRerank is a toolkit for re-ranking algorithms. There are a number of re-ranking algorithms, such as PRM, DLCM, GSF, miDNN, SetRank, EGRer

126 Dec 28, 2022
A simple python program that draws a tree for incrementing values using the Collatz Conjecture.

Collatz Conjecture A simple python program that draws a tree for incrementing values using the Collatz Conjecture. Values which can be edited: Length

davidgasinski 1 Oct 28, 2021
PyCaret is an open-source, low-code machine learning library in Python that automates machine learning workflows.

An open-source, low-code machine learning library in Python 🚀 Version 2.3.5 out now! Check out the release notes here. Official • Docs • Install • Tu

PyCaret 6.7k Jan 08, 2023
A Python step-by-step primer for Machine Learning and Optimization

early-ML Presentation General Machine Learning tutorials A Python step-by-step primer for Machine Learning and Optimization This github repository gat

Dimitri Bettebghor 8 Dec 01, 2022