A python fast implementation of the famous SVD algorithm popularized by Simon Funk during Netflix Prize

Overview

funk-svd Build Status License

funk-svd is a Python 3 library implementing a fast version of the famous SVD algorithm popularized by Simon Funk during the Neflix Prize contest.

Numba is used to speed up our algorithm, enabling us to run over 10 times faster than Surprise's Cython implementation (cf. benchmark notebook).

Movielens 20M RMSE MAE Time
Surprise 0.88 0.68 10 min 40 sec
Funk-svd 0.88 0.68 42 sec

Installation

Run pip install git+https://github.com/gbolmier/funk-svd in your terminal.

Contributing

All contributions, bug reports, bug fixes, enhancements, and ideas are welcome.

A detailed overview on how to contribute can be found in the contributor guide.

Quick example

run_experiment.py:

>>> from funk_svd.dataset import fetch_ml_ratings
>>> from funk_svd import SVD

>>> from sklearn.metrics import mean_absolute_error


>>> df = fetch_ml_ratings(variant='100k')

>>> train = df.sample(frac=0.8, random_state=7)
>>> val = df.drop(train.index.tolist()).sample(frac=0.5, random_state=8)
>>> test = df.drop(train.index.tolist()).drop(val.index.tolist())

>>> svd = SVD(lr=0.001, reg=0.005, n_epochs=100, n_factors=15,
...           early_stopping=True, shuffle=False, min_rating=1, max_rating=5)

>>> svd.fit(X=train, X_val=val)
Preprocessing data...

Epoch 1/...

>>> pred = svd.predict(test)
>>> mae = mean_absolute_error(test['rating'], pred)

>>> print(f'Test MAE: {mae:.2f}')
Test MAE: 0.75

Funk SVD for recommendation in a nutshell

We have a huge sparse matrix:

storing known ratings for a set of users and items:

The idea is to estimate unknown ratings by factorizing the rating matrix into two smaller matrices representing user and item characteristics:

We call these two matrices users and items latent factors. Then, by applying the dot product between both matrices we can reconstruct our rating matrix. The trick is that the empty values will now contain estimated ratings.

In order to get more accurate results, the global average rating as well as the user and item biases are used in addition:

where K stands for known ratings.

Then, we can estimate any rating by applying:

The learning step consists in performing the SGD algorithm where for each known rating the biases and latent factors are updated as follows:

where alpha is the learning rate and lambda is the regularization term.

References

License

MIT license, see here.

Owner
Geoffrey Bolmier
Geoffrey Bolmier
Adaptive: parallel active learning of mathematical functions

adaptive Adaptive: parallel active learning of mathematical functions. adaptive is an open-source Python library designed to make adaptive parallel fu

741 Dec 27, 2022
A visual dataflow programming language for sklearn

Persimmon What is it? Persimmon is a visual dataflow language for creating sklearn pipelines. It represents functions as blocks, inputs and outputs ar

Álvaro Bermejo 194 Jan 04, 2023
This is the code repository for LRM Stochastic watershed model.

LRM-Squannacook Input data for generating stochastic streamflows are observed and simulated timeseries of streamflow. their format needs to be CSV wit

1 Feb 14, 2022
Pytools is an open source library containing general machine learning and visualisation utilities for reuse

pytools is an open source library containing general machine learning and visualisation utilities for reuse, including: Basic tools for API developmen

BCG Gamma 26 Nov 06, 2022
XGBoost-Ray is a distributed backend for XGBoost, built on top of distributed computing framework Ray.

XGBoost-Ray is a distributed backend for XGBoost, built on top of distributed computing framework Ray.

92 Dec 14, 2022
Bayesian Modeling and Computation in Python

Bayesian Modeling and Computation in Python Open access and Code This repository contains the open access version of the text and the code examples in

Bayesian Modeling and Computation in Python 339 Jan 02, 2023
Add built-in support for quaternions to numpy

Quaternions in numpy This Python module adds a quaternion dtype to NumPy. The code was originally based on code by Martin Ling (which he wrote with he

Mike Boyle 531 Dec 28, 2022
Python implementation of Weng-Lin Bayesian ranking, a better, license-free alternative to TrueSkill

Python implementation of Weng-Lin Bayesian ranking, a better, license-free alternative to TrueSkill This is a port of the amazing openskill.js package

Open Debates Project 156 Dec 14, 2022
Machine learning template for projects based on sklearn library.

Machine learning template for projects based on sklearn library.

Janez Lapajne 17 Oct 28, 2022
ml4ir: Machine Learning for Information Retrieval

ml4ir: Machine Learning for Information Retrieval | changelog Quickstart → ml4ir Read the Docs | ml4ir pypi | python ReadMe ml4ir is an open source li

Salesforce 77 Jan 06, 2023
AutoOED: Automated Optimal Experiment Design Platform

AutoOED is an optimal experiment design platform powered with automated machine learning to accelerate the discovery of optimal solutions. Our platform solves multi-objective optimization problems an

Yunsheng Tian 107 Jan 03, 2023
Apache Liminal is an end-to-end platform for data engineers & scientists, allowing them to build, train and deploy machine learning models in a robust and agile way

Apache Liminals goal is to operationalise the machine learning process, allowing data scientists to quickly transition from a successful experiment to an automated pipeline of model training, validat

The Apache Software Foundation 121 Dec 28, 2022
To design and implement the Identification of Iris Flower species using machine learning using Python and the tool Scikit-Learn.

To design and implement the Identification of Iris Flower species using machine learning using Python and the tool Scikit-Learn.

Astitva Veer Garg 1 Jan 11, 2022
YouTube Spam Detection with python

YouTube Spam Detection This code deletes spam comment on youtube videos based on two characteristics (currently) If the author of the comment has a se

MohamadReza Taalebi 5 Sep 27, 2022
Tangram makes it easy for programmers to train, deploy, and monitor machine learning models.

Tangram Website | Discord Tangram makes it easy for programmers to train, deploy, and monitor machine learning models. Run tangram train to train a mo

Tangram 1.4k Jan 05, 2023
A machine learning project that predicts the price of used cars in the UK

Car Price Prediction Image Credit: AA Cars Project Overview Scraped 3000 used cars data from AA Cars website using Python and BeautifulSoup. Cleaned t

Victor Umunna 7 Oct 13, 2022
vortex particles for simulating smoke in 2d

vortex-particles-method-2d vortex particles for simulating smoke in 2d -vortexparticles_s

12 Aug 23, 2022
Kats is a toolkit to analyze time series data, a lightweight, easy-to-use, and generalizable framework to perform time series analysis.

Kats, a kit to analyze time series data, a lightweight, easy-to-use, generalizable, and extendable framework to perform time series analysis, from understanding the key statistics and characteristics

Facebook Research 4.1k Dec 29, 2022
Price Prediction model is used to develop an LSTM model to predict the future market price of Bitcoin and Ethereum.

Price Prediction model is used to develop an LSTM model to predict the future market price of Bitcoin and Ethereum.

2 Jun 14, 2022
In this Repo a simple Sklearn Model will be trained and pushed to MLFlow

SKlearn_to_MLFLow In this Repo a simple Sklearn Model will be trained and pushed to MLFlow Install This Repo is based on poetry python3 -m venv .venv

1 Dec 13, 2021