The Fuzzy Labs guide to the universe of open source MLOps

Overview

Open Source MLOps

This is the Fuzzy Labs guide to the universe of free and open source MLOps tools.

Contents

What is MLOps anyway?

MLOps (machine learning operations) is a discipline that helps people to train, deploy and run machine learning models successfully in production environments. Because this is a new and rapidly-evolving field, there are a lot of tools out there, and new ones appear all the time. If we've missed any, then please do raise a pull request!

Data version control

Just like code, data grows and evolves over time. Data versioning tools help you to keep track of these changes.

You might wonder why you can't just store data in Git (or equivalent). There are a few reasons this doesn't work, but the main one is size: Git is designed for small text files, and typical datasets used in machine learning are just too big. Some tools, like DVC, store the data externally, but also integrate with Git so that data versions can be linked to code versions.

  • DVC - one of the most popular general-purpose data versioning tools.
  • Delta Lake - data versioning for data warehouses.
  • LakeFS - Transform your object storage into a Git-like repository.
  • Git LFS - while this doesn't specialise in machine learning use-cases, it's another popular way to version datasets.

Experiment tracking

Machine learning involves a lot of experimentation. We end up training a lot of models, most of which are never intended to go into production, but represent progressive steps towards having something production-worthy. Experiment tracking tools are there to help us keep track of each experiment. What exactly do we need to track? typically this includes the code version, data version, input parameters, training performance metrics, as well as the final model assets.

Model training

Feature stores

Model deployment and serving

Model serving is the process of taking a trained model and presenting it behind a REST API, and this enables other software components to interact with a model. To make deployment of these model servers as simple as possible, it's commonplace to run them inside Docker containers and deploy them to a container orchestration system such as Kubernetes.

Model monitoring

Full stacks

More resources

Here are some more resources for MLOps, both open-source and proprietary.

Comments
  • Data Catalogues

    Data Catalogues

    Just a short snippet on Data Catalogues. Almost started trying to build out a custom one because I didn't know they existed. Therefore feel it's important to make some noise about them.

    Open to feedback, can add more detail once I know if you guys think they fit the MLOps category. Only didn't put them under the Data Governance bin because those that focus on Data Discovery don't have so much to do with it. Happy to shuffle the content over though.

    opened by GeorgePearse 3
  • Add feathr (feature store by Linkedin)

    Add feathr (feature store by Linkedin)

    This PR adds Feathr

    About Feathr:

    Feathr is an open source enterprise-grade, high performance feature store, hosted in incubation in the LF AI & Data Foundation.

    @archena Please let me know if any changes are needed for the description.

    opened by SangamSwadiK 1
  • add new section for Model validation, with trubrics

    add new section for Model validation, with trubrics

    Hello, we have recently launched Trubrics and I'd love to add it to your great list!

    Trubrics helps Data Scientists validate their models, by providing them with a framework to write validations. Validations can be built purely with data science knowledge, or with feedback collected from business users on ML models.

    Thanks :grinning:

    opened by jeffkayne 1
  • Added MLEM and put description for CML

    Added MLEM and put description for CML

    Hello! We have a new MLOPs tool we'd love to add to the awesome-open-mlops!

    You can find the repo here: https://github.com/iterative/mlem Read the blog post: https://iterative.ai/blog/MLEM-release Watch the video: https://youtu.be/7h0fiZNwCnA

    Let me know if you need anything else or would like to collaborate in some way! Best regards...

    opened by mertbozkir 1
  • Added few notes on YDNBB, plus two more MIT-licensed repos

    Added few notes on YDNBB, plus two more MIT-licensed repos

    Added few hopefully interesting repos, all OS focused. I used monitoring for RecList even if (interestingly) is probably in his own category (with CheckList for example): "model testing", or something like that!

    opened by jacopotagliabue 1
  • Update the open source MLOps repo with data annotation

    Update the open source MLOps repo with data annotation

    Picked out the most interesting tools from this repo built by ZenML. Added a new section to our repo for data annotation. Include a link to ZenML’s repo as well.

    opened by osw282 1
  • chore: Add envd

    chore: Add envd

    I'd like to share envd with the community!

    envd is a machine learning development environment for data science and AI/ML engineering teams.

    🐍 No Docker, only Python - Focus on writing Python code, we will take care of Docker and development environment setup.

    🖨️ Built-in Jupyter/VSCode - First-class support for Jupyter and VSCode remote extension.

    ⏱️ Save time - Better cache management to save your time, keep the focus on the model, instead of dependencies.

    ☁️ Local & cloud - envd integrates seamlessly with Docker so that you can easily share, version, and publish envd environments with Docker Hub or any other OCI image registries.

    🔁 Repeatable builds & reproducible results - You can reproduce the same dev environment on your laptop, public cloud VMs, or Docker containers, without any change in setup.

    Signed-off-by: Ce Gao [email protected]

    opened by gaocegege 1
  • Adds a section for model registries

    Adds a section for model registries

    👋 Hello!

    This PR adds a new section for model registries and I've added both ML Flow and modelstore to it. Disclosure: I'm the author of the latter.

    When reading through the other sections, I saw that this might overlap slightly with experiment tracking, which is described as:

    What exactly do we need to track? typically this includes the code version, data version, input parameters, training performance metrics, as well as the final model assets.

    Happy to change this around as you see fit.

    Thank you for considering this contribution 🙏

    opened by nlathia 1
  • Adds Hamilton and feature engineering section

    Adds Hamilton and feature engineering section

    Hamilton was created to help wrangle a feature engineering code base. It forces decoupling of feature transform logic from materialization, and results in code that is always unit testable, reusable, and documentation friendly.

    I didn't see an appropriate section to add it, so I created a feature engineering section - putting it in feature stores wouldn't be the right place.

    opened by skrawcz 1
  • Image Analysis Tools

    Image Analysis Tools

    I've synced the forks. I have no idea why my previous data catalogue addition is listed again as a new change? Will correct that if anyone can tell me where I've gone wrong.

    I've hit my limit of GitHub lists so will be making greater use of this repo. Adding in image analysis tools (fiftyone - the dominant player, and dendromap - looks very powerful).

    Will add links, and try to get round to adding descriptions for data catalogues soon

    opened by GeorgePearse 1
  • Deepchecks library

    Deepchecks library

    Deepchecks is open source tool for testing and validating machine learning models and data. The 3 checks supported in different phases of ML pipeline are

    • Data Integrity (between ingestion and preprocessing step)
    • Train-Test Validation (Distribution and Methodology Checks) (between preprocessing and training step)
    • Model Performance Evaluation (evaluation step)
    opened by dudeperf3ct 0
Releases(v0.1.0-alpha)
  • v0.1.0-alpha(Dec 13, 2021)

    Initial release of the Awesome Open Source MLOps list.

    • Data version control
    • Experiment tracking
    • Model training
    • Feature stores
    • Model deployment and serving
    • Model monitoring
    • Full stacks
    Source code(tar.gz)
    Source code(zip)
Owner
Fuzzy Labs
MLOps done right
Fuzzy Labs
Fit interpretable models. Explain blackbox machine learning.

InterpretML - Alpha Release In the beginning machines learned in darkness, and data scientists struggled in the void to explain them. Let there be lig

InterpretML 5.2k Jan 09, 2023
[DEPRECATED] Tensorflow wrapper for DataFrames on Apache Spark

TensorFrames (Deprecated) Note: TensorFrames is deprecated. You can use pandas UDF instead. Experimental TensorFlow binding for Scala and Apache Spark

Databricks 757 Dec 31, 2022
Distributed scikit-learn meta-estimators in PySpark

sk-dist: Distributed scikit-learn meta-estimators in PySpark What is it? sk-dist is a Python package for machine learning built on top of scikit-learn

Ibotta 282 Dec 09, 2022
cuML - RAPIDS Machine Learning Library

cuML - GPU Machine Learning Algorithms cuML is a suite of libraries that implement machine learning algorithms and mathematical primitives functions t

RAPIDS 3.1k Dec 28, 2022
We have a dataset of user performances. The project is to develop a machine learning model that will predict the salaries of baseball players.

Salary-Prediction-with-Machine-Learning 1. Business Problem Can a machine learning project be implemented to estimate the salaries of baseball players

Ayşe Nur Türkaslan 9 Oct 14, 2022
This repo includes some graph-based CTR prediction models and other representative baselines.

Graph-based CTR prediction This is a repository designed for graph-based CTR prediction methods, it includes our graph-based CTR prediction methods: F

Big Data and Multi-modal Computing Group, CRIPAC 47 Dec 30, 2022
Scikit learn library models to account for data and concept drift.

liquid_scikit_learn Scikit learn library models to account for data and concept drift. This python library focuses on solving data drift and concept d

7 Nov 18, 2021
This project has Classification and Clustering done Via kNN and K-Means respectfully

This project has Classification and Clustering done Via kNN and K-Means respectfully. It later tests its efficiency via F1/accuracy/recall/precision for kNN and Davies-Bouldin Index for Clustering. T

Mohammad Ali Mustafa 0 Jan 20, 2022
CVXPY is a Python-embedded modeling language for convex optimization problems.

CVXPY The CVXPY documentation is at cvxpy.org. We are building a CVXPY community on Discord. Join the conversation! For issues and long-form discussio

4.3k Jan 08, 2023
neurodsp is a collection of approaches for applying digital signal processing to neural time series

neurodsp is a collection of approaches for applying digital signal processing to neural time series, including algorithms that have been proposed for the analysis of neural time series. It also inclu

NeuroDSP 224 Dec 02, 2022
ELI5 is a Python package which helps to debug machine learning classifiers and explain their predictions

A library for debugging/inspecting machine learning classifiers and explaining their predictions

154 Dec 17, 2022
scikit-fem is a lightweight Python 3.7+ library for performing finite element assembly.

scikit-fem is a lightweight Python 3.7+ library for performing finite element assembly. Its main purpose is the transformation of bilinear forms into sparse matrices and linear forms into vectors.

Tom Gustafsson 297 Dec 13, 2022
scikit-learn models hyperparameters tuning and feature selection, using evolutionary algorithms.

Sklearn-genetic-opt scikit-learn models hyperparameters tuning and feature selection, using evolutionary algorithms. This is meant to be an alternativ

Rodrigo Arenas 180 Dec 20, 2022
Implementation of the Object Relation Transformer for Image Captioning

Object Relation Transformer This is a PyTorch implementation of the Object Relation Transformer published in NeurIPS 2019. You can find the paper here

Yahoo 158 Dec 24, 2022
Both social media sentiment and stock market data are crucial for stock price prediction

Relating-Social-Media-to-Stock-Movement-Public - We explore the application of Machine Learning for predicting the return of the stock by using the information of stock returns. A trading strategy ba

Vishal Singh Parmar 15 Oct 29, 2022
BioPy is a collection (in-progress) of biologically-inspired algorithms written in Python

BioPy is a collection (in-progress) of biologically-inspired algorithms written in Python. Some of the algorithms included are mor

Jared M. Smith 40 Aug 26, 2022
This handbook accompanies the course: Machine Learning with Hung-Yi Lee

This handbook accompanies the course: Machine Learning with Hung-Yi Lee

RenChu Wang 472 Dec 31, 2022
Flightfare-Prediction - It is a Flightfare Prediction Web Application Using Machine learning,Python and flask

Flight_fare-Prediction It is a Flight_fare Prediction Web Application Using Machine learning,Python and flask Using Machine leaning i have created a F

1 Dec 06, 2022
Probabilistic time series modeling in Python

GluonTS - Probabilistic Time Series Modeling in Python GluonTS is a Python toolkit for probabilistic time series modeling, built around Apache MXNet (

Amazon Web Services - Labs 3.3k Jan 03, 2023
XManager: A framework for managing machine learning experiments 🧑‍🔬

XManager is a platform for packaging, running and keeping track of machine learning experiments. It currently enables one to launch experiments locally or on Google Cloud Platform (GCP). Interaction

DeepMind 620 Dec 27, 2022