Deploy AutoML as a service using Flask

Overview

AutoML Service

Deploy automated machine learning (AutoML) as a service using Flask, for both pipeline training and pipeline serving.

The framework implements a fully automated time series classification pipeline, automating both feature engineering and model selection and optimization using Python libraries, TPOT and tsfresh.

Check out the blog post for more info.

Resources:

  • TPOT– Automated feature preprocessing and model optimization tool
  • tsfresh– Automated time series feature engineering and selection
  • Flask– A web development microframework for Python

Architecture

The application exposes both model training and model predictions with a RESTful API. For model training, input data and labels are sent via POST request, a pipeline is trained, and model predictions are accessible via a prediction route.

Pipelines are stored to a unique key, and thus, live predictions can be made on the same data using different feature construction and modeling pipelines.

An automated pipeline for time-series classification.

The model training logic is exposed as a REST endpoint. Raw, labeled training data is uploaded via a POST request and an optimal model is developed.

Raw training data is uploaded via a POST request and a model prediction is returned.

Using the app

View the Jupyter Notebook for an example.

Deploying

# deploy locally
python automl_service.py
# deploy on cloud foundry
cf push

Usage

Train a pipeline:

train_url = 'http://0.0.0.0:8080/train_pipeline'
train_files = {'raw_data': open('data/data_train.json', 'rb'),
               'labels'  : open('data/label_train.json', 'rb'),
               'params'  : open('parameters/train_parameters_model2.yml', 'rb')}

# post request to train pipeline
r_train = requests.post(train_url, files=train_files)
result_df = json.loads(r_train.json())

returns:

{'featureEngParams': {'default_fc_parameters': "['median', 'minimum', 'standard_deviation', 
                                                 'sum_values', 'variance', 'maximum', 
                                                 'length', 'mean']",
                      'impute_function': 'impute',
                      ...},
 'mean_cv_accuracy': 0.865,
 'mean_cv_roc_auc': 0.932,
 'modelId': 1,
 'modelType': "Pipeline(steps=[('stackingestimator', StackingEstimator(estimator=LinearSVC(...))),
                               ('logisticregression', LogisticRegressionClassifier(solver='liblinear',...))])"
 'trainShape': [1647, 8],
 'trainTime': 1.953}

Serve pipeline predictions:

serve_url = 'http://0.0.0.0:8080/serve_prediction'
test_files = {'raw_data': open('data/data_test.json', 'rb'),
              'params' : open('parameters/test_parameters_model2.yml', 'rb')}

# post request to serve predictions from trained pipeline
r_test  = requests.post(serve_url, files=test_files)
result = pd.read_json(r_test.json()).set_index('id')
example_id prediction
1 0.853
2 0.991
3 0.060
4 0.995
5 0.003
... ...

View all trained models:

r = requests.get('http://0.0.0.0:8080/models')
pipelines = json.loads(r.json())
{'1':
    {'mean_cv_accuracy': 0.873,
     'modelType': "RandomForestClassifier(...),
     ...},
 '2':
    {'mean_cv_accuracy': 0.895,
     'modelType': "GradientBoostingClassifier(...),
     ...},
 '3':
    {'mean_cv_accuracy': 0.859,
     'modelType': "LogisticRegressionClassifier(...),
     ...},
...}

Running the tests

Supply a user argument for the host.

# use local app
py.test --host http://0.0.0.0:8080
# use cloud-deployed app
py.test --host http://ROUTE-HERE

Scaling the architecture

For production, I would suggest splitting training and serving into seperate applications, and incorporating a fascade API. Also it would be best to use a shared cache such as Redis or Pivotal Cloud Cache to allow other applications and multiple instances of the pipeline to access the trained model. Here is a potential architecture.

A scalable model training and model serving architecture.

Author

Chris Rawles

Owner
Chris Rawles
...
Chris Rawles
A webpage that utilizes machine learning to extract sentiments from tweets.

Tweets_Classification_Webpage The goal of this project is to be able to predict what rating customers on social media platforms would give to products

Ayaz Nakhuda 1 Dec 30, 2021
Simulation of early COVID-19 using SIR model and variants (SEIR ...).

COVID-19-simulation Simulation of early COVID-19 using SIR model and variants (SEIR ...). Made by the Laboratory of Sustainable Life Assessment (GYRO)

José Paulo Pereira das Dores Savioli 1 Nov 17, 2021
Short PhD seminar on Machine Learning Security (Adversarial Machine Learning)

Short PhD seminar on Machine Learning Security (Adversarial Machine Learning)

141 Dec 27, 2022
🌲 Implementation of the Robust Random Cut Forest algorithm for anomaly detection on streams

🌲 Implementation of the Robust Random Cut Forest algorithm for anomaly detection on streams

Real-time water systems lab 416 Jan 06, 2023
SageMaker Python SDK is an open source library for training and deploying machine learning models on Amazon SageMaker.

SageMaker Python SDK SageMaker Python SDK is an open source library for training and deploying machine learning models on Amazon SageMaker. With the S

Amazon Web Services 1.8k Jan 01, 2023
Simple, fast, and parallelized symbolic regression in Python/Julia via regularized evolution and simulated annealing

Parallelized symbolic regression built on Julia, and interfaced by Python. Uses regularized evolution, simulated annealing, and gradient-free optimization.

Miles Cranmer 924 Jan 03, 2023
A library to generate synthetic time series data by easy-to-use factors and generator

timeseries-generator This repository consists of a python packages that generates synthetic time series dataset in a generic way (under /timeseries_ge

Nike Inc. 87 Dec 20, 2022
Flightfare-Prediction - It is a Flightfare Prediction Web Application Using Machine learning,Python and flask

Flight_fare-Prediction It is a Flight_fare Prediction Web Application Using Machine learning,Python and flask Using Machine leaning i have created a F

1 Dec 06, 2022
EbookMLCB - ebook Machine Learning cơ bản

Mã nguồn cuốn ebook "Machine Learning cơ bản", Vũ Hữu Tiệp. ebook Machine Learning cơ bản pdf-black_white, pdf-color. Mọi hình thức sao chép, in ấn đề

943 Jan 02, 2023
Laporan Proyek Machine Learning - Azhar Rizki Zulma

Laporan Proyek Machine Learning - Azhar Rizki Zulma Project Overview Domain proyek yang dipilih dalam proyek machine learning ini adalah mengenai hibu

Azhar Rizki Zulma 6 Mar 12, 2022
BioPy is a collection (in-progress) of biologically-inspired algorithms written in Python

BioPy is a collection (in-progress) of biologically-inspired algorithms written in Python. Some of the algorithms included are mor

Jared M. Smith 40 Aug 26, 2022
30 Days Of Machine Learning Using Pytorch

Objective of the repository is to learn and build machine learning models using Pytorch. 30DaysofML Using Pytorch

Mayur 119 Nov 24, 2022
MasTrade is a trading bot in baselines3,pytorch,gym

mastrade MasTrade is a trading bot in baselines3,pytorch,gym idea we have for example 1 btc and we buy a crypto with it with market option to trade in

Masoud Azizi 18 May 24, 2022
PennyLane is a cross-platform Python library for differentiable programming of quantum computers

PennyLane is a cross-platform Python library for differentiable programming of quantum computers. Train a quantum computer the same way as a neural ne

PennyLaneAI 1.6k Jan 01, 2023
Winning solution for the Galaxy Challenge on Kaggle

Winning solution for the Galaxy Challenge on Kaggle

Sander Dieleman 483 Jan 02, 2023
GroundSeg Clustering Optimized Kdtree

ground seg and clustering based on kitti velodyne data, and a additional optimized kdtree for knn and radius nn search

2 Dec 02, 2021
Combines Bayesian analyses from many datasets.

PosteriorStacker Combines Bayesian analyses from many datasets. Introduction Method Tutorial Output plot and files Introduction Fitting a model to a d

Johannes Buchner 19 Feb 13, 2022
whylogs: A Data and Machine Learning Logging Standard

whylogs: A Data and Machine Learning Logging Standard whylogs is an open source standard for data and ML logging whylogs logging agent is the easiest

WhyLabs 2k Jan 06, 2023
Test symmetries with sklearn decision tree models

Test symmetries with sklearn decision tree models Setup Begin from an environment with a recent version of python 3. source setup.sh Leave the enviro

Rupert Tombs 2 Jul 19, 2022
A scikit-learn based module for multi-label et. al. classification

scikit-multilearn scikit-multilearn is a Python module capable of performing multi-label learning tasks. It is built on-top of various scientific Pyth

802 Jan 01, 2023