Anytime Learning At Macroscale

Related tags

Machine Learningalma
Overview

On Anytime Learning At Macroscale

Learning from sequential data dumps

(key) Requirements

  • Python 3.7
  • Pytorch 1.9.0
  • Hydra 1.1.0 (pip install hydra-core & pip install hydra-submitit-launcher)

Structure

├── crlapi           
  ├── benchmark.py    # Creates the data stream, feeds it to the model and evaluates it
  ├── core.py         # Abstract classes for 
  ├── logger.py   
  ├── sl
    ├── architectures
      ├── ...         # NN architectures used in this project
    ├── clmodels
      ├── ...         # Models (e.g. Single, gEns, ..., )
    ├── streams
      ├── ...         # CIFAR and MNIST stream implementatins

Running Experiments

To run experiments, you need to call the dataset specific run file, and you need to pass the configuration of the run. We have place the configurations in the previous directory (../configs). The config structure is as follows

    ├── configs
        ├── mnist
           ├── run.py                 # run file
           ├── test_usage_gmoe.yaml   # This is the "gMoE" model
           ├── test_finetune_mlp.yaml # This is the "Single Model"
           ... 
        ├── cifar
           ├── run.py                 # run file
           ├── test_finetune_vgg.yaml # This is the "Single Model"
           ├── test_usage_gmoe.yaml   # This is the "gMoE" model
           ...

To run an e.g. mnist gMoE run, the command is (launched from the directory just above (so cd ..)

PYTHONPATH=./ python configs/mnist/run.py -cn test_usage_gmoe n_megabatches=2 replay=1 clmodel.max_epochs=200 

Important arguments

n_megabatches : controls the number of megabatches. So n_megabatches=1 is your regular full dataset training
replay : whether to use replay or not
clmodel.init_from_scratch : whether to reinitialize the model at every MB. Should only be used when replay=1
device : use cuda or cpu depending on your hardware

License

alma is released under the MIT license. See LICENSE for additional details about it. See also our Terms of Use and Privacy Policy.

Owner
Meta Research
Meta Research
Crypto-trading - ML techiques are used to forecast short term returns in 14 popular cryptocurrencies

Crypto-trading - ML techiques are used to forecast short term returns in 14 popular cryptocurrencies. We have amassed a dataset of millions of rows of high-frequency market data dating back to 2018 w

Panagiotis (Panos) Mavritsakis 4 Sep 22, 2022
Polyglot Machine Learning example for scraping similar news articles.

Polyglot Machine Learning example for scraping similar news articles In this example, we will see how we can work with Machine Learning applications w

MetaCall 15 Mar 28, 2022
Open MLOps - A Production-focused Open-Source Machine Learning Framework

Open MLOps - A Production-focused Open-Source Machine Learning Framework Open MLOps is a set of open-source tools carefully chosen to ease user experi

Data Revenue 590 Dec 28, 2022
A flexible CTF contest platform for coming PKU GeekGame events

Project Guiding Star: the Backend A flexible CTF contest platform for coming PKU GeekGame events Still in early development Highlights Not configurabl

PKU GeekGame 14 Dec 15, 2022
Python based GBDT implementation

Py-boost: a research tool for exploring GBDTs Modern gradient boosting toolkits are very complex and are written in low-level programming languages. A

Sberbank AI Lab 20 Sep 21, 2022
SPCL 48 Dec 12, 2022
Data science, Data manipulation and Machine learning package.

duality Data science, Data manipulation and Machine learning package. Use permitted according to the terms of use and conditions set by the attached l

David Kundih 3 Oct 19, 2022
Neural Machine Translation (NMT) tutorial with OpenNMT-py

Neural Machine Translation (NMT) tutorial with OpenNMT-py. Data preprocessing, model training, evaluation, and deployment.

Yasmin Moslem 29 Jan 09, 2023
A GitHub action that suggests type annotations for Python using machine learning.

Typilus: Suggest Python Type Annotations A GitHub action that suggests type annotations for Python using machine learning. This action makes suggestio

40 Sep 18, 2022
Dual Adaptive Sampling for Machine Learning Interatomic potential.

DAS Dual Adaptive Sampling for Machine Learning Interatomic potential. How to cite If you use this code in your research, please cite this using: Hong

6 Jul 06, 2022
In this Repo a simple Sklearn Model will be trained and pushed to MLFlow

SKlearn_to_MLFLow In this Repo a simple Sklearn Model will be trained and pushed to MLFlow Install This Repo is based on poetry python3 -m venv .venv

1 Dec 13, 2021
A collection of machine learning examples and tutorials.

machine_learning_examples A collection of machine learning examples and tutorials.

LazyProgrammer.me 7.1k Jan 01, 2023
GRaNDPapA: Generator of Rad Names from Decent Paper Acronyms

Generator of Rad Names from Decent Paper Acronyms

264 Nov 08, 2022
nn-Meter is a novel and efficient system to accurately predict the inference latency of DNN models on diverse edge devices

A DNN inference latency prediction toolkit for accurately modeling and predicting the latency on diverse edge devices.

Microsoft 241 Dec 26, 2022
PROTEIN EXPRESSION ANALYSIS FOR DOWN SYNDROME

PROTEIN-EXPRESSION-ANALYSIS-FOR-DOWN-SYNDROME Down syndrome (DS) is a chromosomal disorder where organisms have an extra chromosome 21, sometimes know

1 Jan 20, 2022
Continuously evaluated, functional, incremental, time-series forecasting

timemachines Autonomous, univariate, k-step ahead time-series forecasting functions assigned Elo ratings You can: Use some of the functionality of a s

Peter Cotton 343 Jan 04, 2023
A Python toolkit for rule-based/unsupervised anomaly detection in time series

Anomaly Detection Toolkit (ADTK) Anomaly Detection Toolkit (ADTK) is a Python package for unsupervised / rule-based time series anomaly detection. As

Arundo Analytics 888 Dec 30, 2022
ML Kaggle Titanic Problem using LogisticRegrission

-ML-Kaggle-Titanic-Problem-using-LogisticRegrission here you will find the solution for the titanic problem on kaggle with comments and step by step c

Mahmoud Nasser Abdulhamed 3 Oct 23, 2022
A data preprocessing and feature engineering script for a machine learning pipeline is prepared.

FEATURE ENGINEERING Business Problem: A data preprocessing and feature engineering script for a machine learning pipeline needs to be prepared. It is

Pinar Oner 7 Dec 18, 2021
This machine learning model was developed for House Prices

This machine learning model was developed for House Prices - Advanced Regression Techniques competition in Kaggle by using several machine learning models such as Random Forest, XGBoost and LightGBM.

serhat_derya 1 Mar 02, 2022