Anytime Learning At Macroscale

Related tags

Machine Learningalma
Overview

On Anytime Learning At Macroscale

Learning from sequential data dumps

(key) Requirements

  • Python 3.7
  • Pytorch 1.9.0
  • Hydra 1.1.0 (pip install hydra-core & pip install hydra-submitit-launcher)

Structure

├── crlapi           
  ├── benchmark.py    # Creates the data stream, feeds it to the model and evaluates it
  ├── core.py         # Abstract classes for 
  ├── logger.py   
  ├── sl
    ├── architectures
      ├── ...         # NN architectures used in this project
    ├── clmodels
      ├── ...         # Models (e.g. Single, gEns, ..., )
    ├── streams
      ├── ...         # CIFAR and MNIST stream implementatins

Running Experiments

To run experiments, you need to call the dataset specific run file, and you need to pass the configuration of the run. We have place the configurations in the previous directory (../configs). The config structure is as follows

    ├── configs
        ├── mnist
           ├── run.py                 # run file
           ├── test_usage_gmoe.yaml   # This is the "gMoE" model
           ├── test_finetune_mlp.yaml # This is the "Single Model"
           ... 
        ├── cifar
           ├── run.py                 # run file
           ├── test_finetune_vgg.yaml # This is the "Single Model"
           ├── test_usage_gmoe.yaml   # This is the "gMoE" model
           ...

To run an e.g. mnist gMoE run, the command is (launched from the directory just above (so cd ..)

PYTHONPATH=./ python configs/mnist/run.py -cn test_usage_gmoe n_megabatches=2 replay=1 clmodel.max_epochs=200 

Important arguments

n_megabatches : controls the number of megabatches. So n_megabatches=1 is your regular full dataset training
replay : whether to use replay or not
clmodel.init_from_scratch : whether to reinitialize the model at every MB. Should only be used when replay=1
device : use cuda or cpu depending on your hardware

License

alma is released under the MIT license. See LICENSE for additional details about it. See also our Terms of Use and Privacy Policy.

Owner
Meta Research
Meta Research
Gaussian Process Optimization using GPy

End of maintenance for GPyOpt Dear GPyOpt community! We would like to acknowledge the obvious. The core team of GPyOpt has moved on, and over the past

Sheffield Machine Learning Software 847 Dec 19, 2022
Xeasy-ml is a packaged machine learning framework.

xeasy-ml 1. What is xeasy-ml Xeasy-ml is a packaged machine learning framework. It allows a beginner to quickly build a machine learning model and use

9 Mar 14, 2022
Send rockets to Mars with artificial intelligence(Genetic algorithm) in python.

Send Rockets To Mars With AI Send rockets to Mars with artificial intelligence(Genetic algorithm) in python. Tools Python 3 EasyDraw How to Play Insta

Mohammad Dori 3 Jul 15, 2022
This project impelemented for midterm of the Machine Learning #Zoomcamp #Alexey Grigorev

MLProject_01 This project impelemented for midterm of the Machine Learning #Zoomcamp #Alexey Grigorev Context Dataset English question data set file F

Hadi Nakhi 1 Dec 18, 2021
Dieses Projekt ermöglicht es den Smartmeter der EVN (Netz Niederösterreich) über die Kundenschnittstelle auszulesen.

SmartMeterEVN Dieses Projekt ermöglicht es den Smartmeter der EVN (Netz Niederösterreich) über die Kundenschnittstelle auszulesen. Smart Meter werden

greenMike 43 Dec 04, 2022
Lseng-iseng eksplor Machine Learning dengan menggunakan library Scikit-Learn

Kalo dengar istilah ML, biasanya rada ambigu. Soalnya punya beberapa kepanjangan, seperti Mobile Legend, Makan Lontong, Ma**ng L*v* dan lain-lain. Tapi pada repo ini membahas Machine Learning :)

Alfiyanto Kondolele 1 Apr 06, 2022
Machine learning that just works, for effortless production applications

Machine learning that just works, for effortless production applications

Elisha Yadgaran 16 Sep 02, 2022
Short PhD seminar on Machine Learning Security (Adversarial Machine Learning)

Short PhD seminar on Machine Learning Security (Adversarial Machine Learning)

141 Dec 27, 2022
Relevance Vector Machine implementation using the scikit-learn API.

scikit-rvm scikit-rvm is a Python module implementing the Relevance Vector Machine (RVM) machine learning technique using the scikit-learn API. Quicks

James Ritchie 204 Nov 18, 2022
To-Be is a machine learning challenge on CodaLab Platform about Mortality Prediction

To-Be is a machine learning challenge on CodaLab Platform about Mortality Prediction. The challenge aims to adress the problems of medical imbalanced data classification.

Marwan Mashra 1 Jan 31, 2022
Evidently helps analyze machine learning models during validation or production monitoring

Evidently helps analyze machine learning models during validation or production monitoring. The tool generates interactive visual reports and JSON profiles from pandas DataFrame or csv files. Current

Evidently AI 3.1k Jan 07, 2023
Reggy - Regressions with arbitrarily complex regularization terms

reggy Regressions with arbitrarily complex regularization terms. Currently suppo

Kim 1 Jan 20, 2022
XGBoost + Optuna

AutoXGB XGBoost + Optuna: no brainer auto train xgboost directly from CSV files auto tune xgboost using optuna auto serve best xgboot model using fast

abhishek thakur 517 Dec 31, 2022
scikit-learn models hyperparameters tuning and feature selection, using evolutionary algorithms.

Sklearn-genetic-opt scikit-learn models hyperparameters tuning and feature selection, using evolutionary algorithms. This is meant to be an alternativ

Rodrigo Arenas 180 Dec 20, 2022
A Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming.

Master status: Development status: Package information: TPOT stands for Tree-based Pipeline Optimization Tool. Consider TPOT your Data Science Assista

Epistasis Lab at UPenn 8.9k Jan 09, 2023
Python based GBDT implementation

Py-boost: a research tool for exploring GBDTs Modern gradient boosting toolkits are very complex and are written in low-level programming languages. A

Sberbank AI Lab 20 Sep 21, 2022
A simple and lightweight genetic algorithm for optimization of any machine learning model

geneticml This package contains a simple and lightweight genetic algorithm for optimization of any machine learning model. Installation Use pip to ins

Allan Barcelos 8 Aug 10, 2022
Python factor analysis library (PCA, CA, MCA, MFA, FAMD)

Prince is a library for doing factor analysis. This includes a variety of methods including principal component analysis (PCA) and correspondence anal

Max Halford 915 Dec 31, 2022
CobraML: Completely Customizable A python ML library designed to give the end user full control

CobraML: Completely Customizable What is it? CobraML is a python library built on both numpy and numba. Unlike other ML libraries CobraML gives the us

Sriram Govindan 14 Dec 19, 2021
The code from the Machine Learning Bookcamp book and a free course based on the book

The code from the Machine Learning Bookcamp book and a free course based on the book

Alexey Grigorev 5.5k Jan 09, 2023