PROTEIN EXPRESSION ANALYSIS FOR DOWN SYNDROME

Overview

PROTEIN-EXPRESSION-ANALYSIS-FOR-DOWN-SYNDROME

Down syndrome (DS) is a chromosomal disorder where organisms have an extra chromosome 21, sometimes known as trisomy 21. Being a syndrome, DS consists of multiple symptoms affecting a large number of systems in the body. It’s effect on learning results in it being an intellectual disability . Memantine is currently proposed as a treatment of the learning deficit symptoms in DS. In this project, we have used several supervised machine learning methods:logistic regression, a random forest classifier,k nearest neighbour and voting classifier, to identify which protein(s) are critical to mice learning ability after being exposed to context fear conditioning (CFC). 77 protein expression levels are analysed from both control and trisomic (Ts65Dn) genotype mice, both with and without treatment from the drug memantine. Results suggest that voting classification approach can identify the most important proteins which may help to identify more effective drugs to help the learning process in people with DS.

Identified proteins critical to learning ability and classification of mice based on protein expression values using machine learning algorithms.

ArviZ is a Python package for exploratory analysis of Bayesian models

ArviZ (pronounced "AR-vees") is a Python package for exploratory analysis of Bayesian models. Includes functions for posterior analysis, data storage, model checking, comparison and diagnostics

ArviZ 1.3k Jan 05, 2023
2D fluid simulation implementation of Jos Stam paper on real-time fuild dynamics, including some suggested extensions.

Fluid Simulation Usage Download this repo and store it in your computer. Open a terminal and go to the root directory of this folder. Make sure you ha

Mariana Ávalos Arce 5 Dec 02, 2022
A Time Series Library for Apache Spark

Flint: A Time Series Library for Apache Spark The ability to analyze time series data at scale is critical for the success of finance and IoT applicat

Two Sigma 970 Jan 04, 2023
Winning solution for the Galaxy Challenge on Kaggle

Winning solution for the Galaxy Challenge on Kaggle

Sander Dieleman 483 Jan 02, 2023
Neighbourhood Retrieval (Nearest Neighbours) with Distance Correlation.

Neighbourhood Retrieval with Distance Correlation Assign Pseudo class labels to datapoints in the latent space. NNDC is a slim wrapper around FAISS. N

The Learning Machines 1 Jan 16, 2022
scikit-learn: machine learning in Python

scikit-learn is a Python module for machine learning built on top of SciPy and is distributed under the 3-Clause BSD license. The project was started

neurodata 3 Dec 16, 2022
Learning --> Numpy January 2022 - winter'22

Numerical-Python Numpy NumPy is a library for the Python programming language, adding support for large, multi-dimensional arrays and matrices, along

Shahzaneer Ahmed 0 Mar 12, 2022
Projeto: Machine Learning: Linguagens de Programacao 2004-2001

Projeto: Machine Learning: Linguagens de Programacao 2004-2001 Projeto de Data Science e Machine Learning de análise de linguagens de programação de 2

Victor Hugo Negrisoli 0 Jun 29, 2021
TIANCHI Purchase Redemption Forecast Challenge

TIANCHI Purchase Redemption Forecast Challenge

Haorui HE 4 Aug 26, 2022
Extended Isolation Forest for Anomaly Detection

Table of contents Extended Isolation Forest Summary Motivation Isolation Forest Extension The Code Installation Requirements Use Citation Releases Ext

Sahand Hariri 377 Dec 18, 2022
Mortality risk prediction for COVID-19 patients using XGBoost models

Mortality risk prediction for COVID-19 patients using XGBoost models Using demographic and lab test data received from the HM Hospitales in Spain, I b

1 Jan 19, 2022
easyNeuron is a simple way to create powerful machine learning models, analyze data and research cutting-edge AI.

easyNeuron is a simple way to create powerful machine learning models, analyze data and research cutting-edge AI.

Neuron AI 5 Jun 18, 2022
Azure MLOps (v2) solution accelerators.

Azure MLOps (v2) solution accelerator Welcome to the MLOps (v2) solution accelerator repository! This project is intended to serve as the starting poi

Microsoft Azure 233 Jan 01, 2023
Time-series momentum for momentum investing strategy

Time-series-momentum Time-series momentum strategy. You can use the data_analysis.py file to find out the best trigger and window for a given asset an

Victor Caldeira 3 Jun 18, 2022
This is the code repository for Interpretable Machine Learning with Python, published by Packt.

Interpretable Machine Learning with Python, published by Packt

Packt 299 Jan 02, 2023
Python ML pipeline that showcases mltrace functionality.

mltrace tutorial Date: October 2021 This tutorial builds a training and testing pipeline for a toy ML prediction problem: to predict whether a passeng

Log Labs 28 Nov 09, 2022
A benchmark of data-centric tasks from across the machine learning lifecycle.

A benchmark of data-centric tasks from across the machine learning lifecycle.

61 Dec 28, 2022
An AutoML survey focusing on practical systems.

This project is a community effort in constructing and maintaining an up-to-date beginner-friendly introduction to AutoML, focusing on practical systems. AutoML is a big field, and continues to grow

AutoGOAL 16 Aug 14, 2022
An MLOps framework to package, deploy, monitor and manage thousands of production machine learning models

Seldon Core: Blazing Fast, Industry-Ready ML An open source platform to deploy your machine learning models on Kubernetes at massive scale. Overview S

Seldon 3.5k Jan 01, 2023
Data from "Datamodels: Predicting Predictions with Training Data"

Data from "Datamodels: Predicting Predictions with Training Data" Here we provid

Madry Lab 51 Dec 09, 2022