2D fluid simulation implementation of Jos Stam paper on real-time fuild dynamics, including some suggested extensions.

Overview

Fluid Simulation

image

Usage

  1. Download this repo and store it in your computer.
  2. Open a terminal and go to the root directory of this folder.
  3. Make sure you have installed the needed dependencies by typing:
$ pip install numpy
$ pip install matplotlib
$ pip install ffmpeg

Note: Go to Install FFmpeg on Windows section if you haven't installed FFmpeg software locally before. It must be added to PATH so that videos can be saved.

  1. Type to run:
$ python fluid.py -i config.json

Where the config.json file is the input file inside the same folder as main.py file.

The Development Log file is also located in the root directory of this repository, where all the logic and structure of the programming done is explained.

Input

The config.json file is the input file you must provide as a command parameter. The structure of the file must be the following:

  1. color: string that contains any of the available options in colors.py.

  2. frames: integer that determines the frame duration of the video.

  3. sources: an array of dictionaries. Each dictionary in the array represents an emitter, which is a source of density and velocity. There cannot be emitters of just velocity or just density, because it would not make sense. Emitters must contain:

    • position: x and y integers, which are the top left position.
    • size: integer that defines an NxN square emitter.
    • density: integer that represents the amount of density of the emitter.
    • velocity:
      • x and y float/integer numbers that represent the velocity direction of the emitter.
      • behaviour: string that contains any of the available options in behaviours.py.
      • factor: float integer/float number that will act as a parameter depending on the behaviour chosen.
  4. objects: an array of dictionaries. Each dictionary in the array represents an object, where each of the objects must contain:

    • position: x and y integers, which are the top left position.
    • size: height and width integers, which will be the shape of a height x width rectangular object.
    • density: integer that represents the amount of density of the object. An object is indeed having a constant amount of density that will not be modified by the liquid, since it's a solid, but you need to determine the density or 'color' the object will have visually.

The folder evidences contains a series of example JSON files and their output videos, with both simple and complex examples of the output.

Features

  • Color Scheme

Inside the config.json file, change the color property and write the color scheme you want from the list below.

image

For example, by having 'hot' as the color property in the json file, you get the following:

image

  • Sources Placement

Inside the config.json file, you can specify the characteristics of an emitter you want to place. An emitter is a source of density and certain velocity.

image

  • Objects Placement

Inside the config.json file, you can specify the position and shape of a solid object inside the fluid.

image

  • Velocity Behaviours

Inside the config.json file, change the behaviour property inside velocity and write the behaviour of the velocity of said emitter you wish for. Supported options are:

  1. zigzag vertical,

image

  1. zigzag horizontal, that works the same as the above but horizontally.

  2. vortex,

image

  1. noise,

image

  1. fourier (left), which is a bit like a zigzag (right) but noisier.

image

  1. motor

image

Install FFmpeg on Windows

Apart from the pip installation of ffmpeg, you need to install ffmpeg for your machine OS (in my case, Windows 10) by going to either of the following links:

  • ffmpeg.org

    • Click on the Windows icon.
    • Click on gyan dev option.
  • gyan.dev

    • Go to the Git section and click on the first link.
    • Extract the folder from the zip.
    • Cut and paste the folder in your C: disk.
    • Add C:\FFmpeg\bin to PATH by typing in a terminal with admin rights:
     $ setx /m PATH "C:\FFmpeg\bin;%PATH%"
    
    • Open another terminal and test the installation by typing:
     $ ffmpeg -version
    

Handy Links

Owner
Mariana Ávalos Arce
I like code and math. I like football too. [Software & Computer Graphics]
Mariana Ávalos Arce
Self Organising Map (SOM) for clustering of atomistic samples through unsupervised learning.

Self Organising Map for Clustering of Atomistic Samples - V2 Description Self Organising Map (also known as Kohonen Network) implemented in Python for

Franco Aquistapace 0 Nov 16, 2021
Contains an implementation (sklearn API) of the algorithm proposed in "GENDIS: GEnetic DIscovery of Shapelets" and code to reproduce all experiments.

GENDIS GENetic DIscovery of Shapelets In the time series classification domain, shapelets are small subseries that are discriminative for a certain cl

IDLab Services 90 Oct 28, 2022
PyNNDescent is a Python nearest neighbor descent for approximate nearest neighbors.

PyNNDescent PyNNDescent is a Python nearest neighbor descent for approximate nearest neighbors. It provides a python implementation of Nearest Neighbo

Leland McInnes 699 Jan 09, 2023
A mindmap summarising Machine Learning concepts, from Data Analysis to Deep Learning.

A mindmap summarising Machine Learning concepts, from Data Analysis to Deep Learning.

Daniel Formoso 5.7k Dec 30, 2022
Python 3.6+ toolbox for submitting jobs to Slurm

Submit it! What is submitit? Submitit is a lightweight tool for submitting Python functions for computation within a Slurm cluster. It basically wraps

Facebook Incubator 768 Jan 03, 2023
The Emergence of Individuality

The Emergence of Individuality

16 Jul 20, 2022
A Lightweight Hyperparameter Optimization Tool 🚀

The mle-hyperopt package provides a simple and intuitive API for hyperparameter optimization of your Machine Learning Experiment (MLE) pipeline.

Robert Lange 137 Dec 02, 2022
A complete guide to start and improve in machine learning (ML)

A complete guide to start and improve in machine learning (ML), artificial intelligence (AI) in 2021 without ANY background in the field and stay up-to-date with the latest news and state-of-the-art

Louis-François Bouchard 3.3k Jan 04, 2023
Transform ML models into a native code with zero dependencies

m2cgen (Model 2 Code Generator) - is a lightweight library which provides an easy way to transpile trained statistical models into a native code

Bayes' Witnesses 2.3k Jan 03, 2023
(3D): LeGO-LOAM, LIO-SAM, and LVI-SAM installation and application

SLAM-application: installation and test (3D): LeGO-LOAM, LIO-SAM, and LVI-SAM Tested on Quadruped robot in Gazebo ● Results: video, video2 Requirement

EungChang-Mason-Lee 203 Dec 26, 2022
This project has Classification and Clustering done Via kNN and K-Means respectfully

This project has Classification and Clustering done Via kNN and K-Means respectfully. It later tests its efficiency via F1/accuracy/recall/precision for kNN and Davies-Bouldin Index for Clustering. T

Mohammad Ali Mustafa 0 Jan 20, 2022
A statistical library designed to fill the void in Python's time series analysis capabilities, including the equivalent of R's auto.arima function.

pmdarima Pmdarima (originally pyramid-arima, for the anagram of 'py' + 'arima') is a statistical library designed to fill the void in Python's time se

alkaline-ml 1.3k Dec 22, 2022
Crypto-trading - ML techiques are used to forecast short term returns in 14 popular cryptocurrencies

Crypto-trading - ML techiques are used to forecast short term returns in 14 popular cryptocurrencies. We have amassed a dataset of millions of rows of high-frequency market data dating back to 2018 w

Panagiotis (Panos) Mavritsakis 4 Sep 22, 2022
A comprehensive repository containing 30+ notebooks on learning machine learning!

A comprehensive repository containing 30+ notebooks on learning machine learning!

Jean de Dieu Nyandwi 3.8k Jan 09, 2023
To-Be is a machine learning challenge on CodaLab Platform about Mortality Prediction

To-Be is a machine learning challenge on CodaLab Platform about Mortality Prediction. The challenge aims to adress the problems of medical imbalanced data classification.

Marwan Mashra 1 Jan 31, 2022
MBTR is a python package for multivariate boosted tree regressors trained in parameter space.

MBTR is a python package for multivariate boosted tree regressors trained in parameter space.

SUPSI-DACD-ISAAC 61 Dec 19, 2022
MLReef is an open source ML-Ops platform that helps you collaborate, reproduce and share your Machine Learning work with thousands of other users.

The collaboration platform for Machine Learning MLReef is an open source ML-Ops platform that helps you collaborate, reproduce and share your Machine

MLReef 1.4k Dec 27, 2022
Applied Machine Learning for Graduate Program in Computer Science (PPGCC)

Applied Machine Learning for Graduate Program in Computer Science (PPGCC) - Federal University of Santa Catarina

Jônatas Negri Grandini 1 Dec 22, 2021
flexible time-series processing & feature extraction

A corona statistics and information telegram bot.

PreDiCT.IDLab 206 Dec 28, 2022
Probabilistic programming framework that facilitates objective model selection for time-varying parameter models.

Time series analysis today is an important cornerstone of quantitative science in many disciplines, including natural and life sciences as well as eco

Christoph Mark 129 Dec 24, 2022