Self Organising Map (SOM) for clustering of atomistic samples through unsupervised learning.

Overview

Self Organising Map for Clustering of Atomistic Samples - V2

Description

Self Organising Map (also known as Kohonen Network) implemented in Python for clustering of atomistic samples through unsupervised learning. The program allows the user to select wich per-atom quantities to use for training and application of the network, this quantities must be specified in the LAMMPS input file that is being analysed. The algorithm also requires the user to introduce some of the networks parameters:

  • f: Fraction of the input data to be used when training the network, must be between 0 and 1.
  • SIGMA: Maximum value of the sigma function, present in the neighbourhood function.
  • ETA: Maximum value of the eta funtion, which acts as the learning rate of the network.
  • N: Number of output neurons of the SOM, this is the number of groups the algorithm will use when classifying the atoms in the sample.
  • Whether to use batched or serial learning for the training process.
  • B: Batch size, in case the training is performed with batched learning.

The input file must be inside the same folder as the main.py file. Furthermore, the input file passed to the algorithm must have the LAMMPS dump format, or at least have a line with the following format:

ITEM: ATOMS id x y z feature_1 feature_2 ...

To run the software, simply execute the following command in a terminal (from the folder that contains the files and with a python environment activated):

python3 main.py

Check the software report in the general repository for more information: https://github.com/rambo1309/SOM_for_Atomistic_Samples_GeneralRepo

Dependencies:

This software is written in Python 3.8.8 and uses the following external libraries:

  • NumPy 1.20.1
  • Pandas 1.2.4

(Both packages come with the basic installation of Anaconda)

What's new in V2:

Its important to clarify that V2 of the software isn't designed to replace V1, but to be used when multiple files need to be analysed sequentially with a network that has been trained using a specific training file. It is recommended for the user to first use V1 to explore the results given by different parameters and features of the sample, and then to use V2 to get consistent results for a series of samples. Another reason why V1 will be continually updated is its command-line interactive interface, which allows the users to implement the algorithm without ever having to open and edit a python file.

The most fundamental change with respect to V.1 is the way of communicating with the program. While V.1 uses an interactive command-line interface, V.2 requests an input_params.py file that contains a dictionary specifying the parameters and sample files for the algorithm.

Check the report file in the repository for a complete description of the changes made in the software.

Updates:

Currently working on giving the user the option to change the learning rate funtion, eta, with a few alternatives such as a power-law and an exponential decrease. Another important issue still to be addressed is the training time of the SOM.

Owner
Franco Aquistapace
Undergraduate Physics student at FCEN, UNCuyo
Franco Aquistapace
MLR - Machine Learning Research

Machine Learning Research 1. Project Topic 1.1. Exsiting research Benmark: https://paperswithcode.com/sota ACL anthology for NLP papers: http://www.ac

Charles 69 Oct 20, 2022
Add built-in support for quaternions to numpy

Quaternions in numpy This Python module adds a quaternion dtype to NumPy. The code was originally based on code by Martin Ling (which he wrote with he

Mike Boyle 531 Dec 28, 2022
scikit-multimodallearn is a Python package implementing algorithms multimodal data.

scikit-multimodallearn is a Python package implementing algorithms multimodal data. It is compatible with scikit-learn, a popul

12 Jun 29, 2022
Python package for causal inference using Bayesian structural time-series models.

Python Causal Impact Causal inference using Bayesian structural time-series models. This package aims at defining a python equivalent of the R CausalI

Thomas Cassou 219 Dec 11, 2022
Hierarchical Time Series Forecasting using Prophet

htsprophet Hierarchical Time Series Forecasting using Prophet Credit to Rob J. Hyndman and research partners as much of the code was developed with th

Collin Rooney 131 Dec 02, 2022
CS 7301: Spring 2021 Course on Advanced Topics in Optimization in Machine Learning

CS 7301: Spring 2021 Course on Advanced Topics in Optimization in Machine Learning

Rishabh Iyer 141 Nov 10, 2022
Learning --> Numpy January 2022 - winter'22

Numerical-Python Numpy NumPy is a library for the Python programming language, adding support for large, multi-dimensional arrays and matrices, along

Shahzaneer Ahmed 0 Mar 12, 2022
whylogs: A Data and Machine Learning Logging Standard

whylogs: A Data and Machine Learning Logging Standard whylogs is an open source standard for data and ML logging whylogs logging agent is the easiest

WhyLabs 2k Jan 06, 2023
Distributed deep learning on Hadoop and Spark clusters.

Note: we're lovingly marking this project as Archived since we're no longer supporting it. You are welcome to read the code and fork your own version

Yahoo 1.3k Dec 28, 2022
Real-time domain adaptation for semantic segmentation

Advanced-Machine-Learning This repository contains the code for the project Real

Andrea Cavallo 1 Jan 30, 2022
Crypto-trading - ML techiques are used to forecast short term returns in 14 popular cryptocurrencies

Crypto-trading - ML techiques are used to forecast short term returns in 14 popular cryptocurrencies. We have amassed a dataset of millions of rows of high-frequency market data dating back to 2018 w

Panagiotis (Panos) Mavritsakis 4 Sep 22, 2022
Sleep stages are classified with the help of ML. We have used 4 different ML algorithms (SVM, KNN, RF, NN) to demonstrate them

Sleep stages are classified with the help of ML. We have used 4 different ML algorithms (SVM, KNN, RF, NN) to demonstrate them.

Anirudh Edpuganti 3 Apr 03, 2022
Optuna is an automatic hyperparameter optimization software framework, particularly designed for machine learning

Optuna is an automatic hyperparameter optimization software framework, particularly designed for machine learning. It features an imperative, define-by-run style user API.

7.4k Jan 04, 2023
Python module for data science and machine learning users.

dsnk-distributions package dsnk distribution is a Python module for data science and machine learning that was created with the goal of reducing calcu

Emmanuel ASIFIWE 1 Nov 23, 2021
A statistical library designed to fill the void in Python's time series analysis capabilities, including the equivalent of R's auto.arima function.

pmdarima Pmdarima (originally pyramid-arima, for the anagram of 'py' + 'arima') is a statistical library designed to fill the void in Python's time se

alkaline-ml 1.3k Jan 06, 2023
nn-Meter is a novel and efficient system to accurately predict the inference latency of DNN models on diverse edge devices

A DNN inference latency prediction toolkit for accurately modeling and predicting the latency on diverse edge devices.

Microsoft 241 Dec 26, 2022
Getting Profit and Loss Make Easy From Binance

Getting Profit and Loss Make Easy From Binance I have been in Binance Automated Trading for some time and have generated a lot of transaction records,

17 Dec 21, 2022
Katana project is a template for ASAP 🚀 ML application deployment

Katana project is a FastAPI template for ASAP 🚀 ML API deployment

Mohammad Shahebaz 100 Dec 26, 2022
K-means clustering is a method used for clustering analysis, especially in data mining and statistics.

K Means Algorithm What is K Means This algorithm is an iterative algorithm that partitions the dataset according to their features into K number of pr

1 Nov 01, 2021
Scikit learn library models to account for data and concept drift.

liquid_scikit_learn Scikit learn library models to account for data and concept drift. This python library focuses on solving data drift and concept d

7 Nov 18, 2021