CS 7301: Spring 2021 Course on Advanced Topics in Optimization in Machine Learning

Overview

Advanced Topics in Optimization for Machine Learning

CS 7301: Spring 2021 Course on Advanced Topics in Optimization for Machine Learning

Video Lectures

Video Lectures are on this youtube playlist: https://www.youtube.com/playlist?list=PLGod0_zT9w92_evaYrf3-rE67AmgPJoUU

Github Link to all Demos

https://github.com/rishabhk108/OptimizationDemos

Link to Google Spreadsheet for Paper Review and Project Topics

https://docs.google.com/spreadsheets/d/1UHHFlo_8QAvmXjWqoU02Calq86S-ewYl7Jczjhgr0wY/edit?usp=sharing

Deadline for finalizing on the papers to cover: February 26th

Deadine for finalizing on the project topic: March 5th

Topics Covered in this Course

  • Week 1
    • Logistics, Outline of this Course
    • Continuous Optimization in ML
    • Convex Sets and Basics of Convexity
  • Week 2: Gradient Descent and Family
    • Convex Functions, Properties, Minima, Subgradients
    • Gradient Descent and Line Search
  • Week 3: Gradient Descent Cont.
    • Accelerated Gradient Descent
    • Projected and Proximal Gradient Descent
  • Week 4
    • Projected GD and Conditional GD (Constrained Case)
    • Second Order Methods (Newton, Quasi-Newton, BFGS, LBFGS)
  • Week 5
    • Second Order Methods Completed
    • Barzelia Borwein and Conjugate GD
    • Coordinate Descent Family
  • Week 6
    • Stochastic Gradient and Family (SGD, SVRG)
    • SGD for Non-Convex Optimization. Modern variants of SGD particularly for deep learning (e.g. Adagrad, Adam, AdaDelta, RMSProp, Momentum etc.)
  • Week 7
    • Submodular Optimization: Basics, Definitions, Properties, and Examples.
  • Week 8
    • Submodular Information Measures: Conditional Gain, Submodular Mutual Information, Submodular Span, Submodular Multi-Set Mutual Information
  • Week 9
    • Submodular Minimization and Continuous Extensions of Submodular Functions. Submodular Minimization under constraints
  • Week 10
    • Submodular Maximization Variants, Submodular Set Cover, Approximate submodularity. Algorithms under different constraints and monotone/non-monotone settings. Also, distributed and streaming algorithms, DS Optimization, Submodular Optimization under Submodular Constraints
  • Week 11
    • Applications of Discrete Optimization: Data Subset Selection, Data Summarization, Feature Selection, Active Learning etc.
  • Rest of the Weeks
    • Paper Presentations/Project Presentations by the Students

Grading

  • 10% for Class Participation (Interaction, asking questions, answering questions)
  • 30% Assignments (2 Assignments, one on continuous optimization and one on discrete optimization)
  • 30% Paper Presentations (1-2 papers per student)
  • 30% for the Final Project
    • Take a new dataset/problem and study how existing optimization algorithms work on them
    • Take an existing problem and compare all optimization algorithms with your implementation from scratch
    • Design a ML optimization toolkit with algorithms implemented from scratch -- if one of you would like to extend my current python demos for optimization, that will be an awesome contribution and I might pick it up for my future classes and acknowledge you :)

Other Similar Courses

Resources/Books/Papers

Owner
Rishabh Iyer
Currently Assistant Prof. at CSE @ UTD. 10+ years experience in Deep Learning, AI and ML. Ph.D. and PostDoc from UW and previously ML Researcher at Microsoft.
Rishabh Iyer
Apple-voice-recognition - Machine Learning

Apple-voice-recognition Machine Learning How does Siri work? Siri is based on large-scale Machine Learning systems that employ many aspects of data sc

Harshith VH 1 Oct 22, 2021
Python based GBDT implementation

Py-boost: a research tool for exploring GBDTs Modern gradient boosting toolkits are very complex and are written in low-level programming languages. A

Sberbank AI Lab 20 Sep 21, 2022
Implementation of the Object Relation Transformer for Image Captioning

Object Relation Transformer This is a PyTorch implementation of the Object Relation Transformer published in NeurIPS 2019. You can find the paper here

Yahoo 158 Dec 24, 2022
Machine Learning Algorithms ( Desion Tree, XG Boost, Random Forest )

implementation of machine learning Algorithms such as decision tree and random forest and xgboost on darasets then compare results for each and implement ant colony and genetic algorithms on tsp map,

Mohamadreza Rezaei 1 Jan 19, 2022
TensorFlowOnSpark brings TensorFlow programs to Apache Spark clusters.

TensorFlowOnSpark TensorFlowOnSpark brings scalable deep learning to Apache Hadoop and Apache Spark clusters. By combining salient features from the T

Yahoo 3.8k Jan 04, 2023
Tools for Optuna, MLflow and the integration of both.

HPOflow - Sphinx DOC Tools for Optuna, MLflow and the integration of both. Detailed documentation with examples can be found here: Sphinx DOC Table of

Telekom Open Source Software 17 Nov 20, 2022
Cohort Intelligence used to solve various mathematical functions

Cohort-Intelligence-for-Mathematical-Functions About Cohort Intelligence : Cohort Intelligence ( CI ) is an optimization technique. It attempts to mod

Aayush Khandekar 2 Oct 25, 2021
机器学习检测webshell

ai-webshell-detect 机器学习检测webshell,利用textcnn+简单二分类网络,基于keras,花了七天 检测原理: 从文件熵 文件长度 文件语句提取出特征,然后文件熵与长度送入二分类网络,文件语句送入textcnn 项目原理,介绍,怎么做出来的

Huoji's 56 Dec 14, 2022
A machine learning toolkit dedicated to time-series data

tslearn The machine learning toolkit for time series analysis in Python Section Description Installation Installing the dependencies and tslearn Getti

2.3k Jan 05, 2023
JMP is a Mixed Precision library for JAX.

Mixed precision training [0] is a technique that mixes the use of full and half precision floating point numbers during training to reduce the memory bandwidth requirements and improve the computatio

DeepMind 108 Dec 31, 2022
DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective.

DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective. 10x Larger Models 10x Faster Trainin

Microsoft 8.4k Dec 30, 2022
Contains an implementation (sklearn API) of the algorithm proposed in "GENDIS: GEnetic DIscovery of Shapelets" and code to reproduce all experiments.

GENDIS GENetic DIscovery of Shapelets In the time series classification domain, shapelets are small subseries that are discriminative for a certain cl

IDLab Services 90 Oct 28, 2022
healthy and lesion models for learning based on the joint estimation of stochasticity and volatility

health-lesion-stovol healthy and lesion models for learning based on the joint estimation of stochasticity and volatility Reference please cite this p

5 Nov 01, 2022
Machine Learning Algorithms

Machine-Learning-Algorithms In this project, the dataset was created through a survey opened on Google forms. The purpose of the form is to find the p

Göktuğ Ayar 3 Aug 10, 2022
100 Days of Machine and Deep Learning Code

💯 Days of Machine Learning and Deep Learning Code MACHINE LEARNING TOPICS COVERED - FROM SCRATCH Linear Regression Logistic Regression K Means Cluste

Tanishq Gautam 66 Nov 02, 2022
LightGBM + Optuna: no brainer

AutoLGBM LightGBM + Optuna: no brainer auto train lightgbm directly from CSV files auto tune lightgbm using optuna auto serve best lightgbm model usin

Rishiraj Acharya 22 Dec 15, 2022
NCVX (NonConVeX): A User-Friendly and Scalable Package for Nonconvex Optimization in Machine Learning.

NCVX (NonConVeX): A User-Friendly and Scalable Package for Nonconvex Optimization in Machine Learning.

SUN Group @ UMN 28 Aug 03, 2022
Laporan Proyek Machine Learning - Azhar Rizki Zulma

Laporan Proyek Machine Learning - Azhar Rizki Zulma Project Overview Domain proyek yang dipilih dalam proyek machine learning ini adalah mengenai hibu

Azhar Rizki Zulma 6 Mar 12, 2022
Binary Classification Problem with Machine Learning

Binary Classification Problem with Machine Learning Solving Approach: 1) Ultimate Goal of the Assignment: This assignment is about solving a binary cl

Dinesh Mali 0 Jan 20, 2022
30 Days Of Machine Learning Using Pytorch

Objective of the repository is to learn and build machine learning models using Pytorch. 30DaysofML Using Pytorch

Mayur 119 Nov 24, 2022