A project based example of Data pipelines, ML workflow management, API endpoints and Monitoring.

Overview

MLOps

Code style: black Checked with mypy

MLops

A project based example of Data pipelines, ML workflow management, API endpoints and Monitoring.

Tools used:

Blog posts

Requirements

Poetry (dependency management)

$ curl -sSL https://raw.githubusercontent.com/python-poetry/poetry/master/get-poetry.py | python -
$ poetry --version
# Poetry version 1.1.10

pre-commit (static code analysis)

$ pip install pre-commit
$ pre-commit --version
# pre-commit 2.15.0

Minio (s3 compatible object storage)

Follow the instructions here - https://min.io/download

Setup

Environment setup

$ poetry install

MLflow

$ poetry shell
$ export MLFLOW_S3_ENDPOINT_URL=http://127.0.0.1:9000
$ export AWS_ACCESS_KEY_ID=minioadmin
$ export AWS_SECRET_ACCESS_KEY=minioadmin

# make sure that the backend store and artifact locations are same in the .env file as well
$ mlflow server \
    --backend-store-uri sqlite:///mlflow.db \
    --default-artifact-root s3://mlflow \
    --host 0.0.0.0

Minio

$ export MINIO_ROOT_USER=minioadmin
$ export MINIO_ROOT_PASSWORD=minioadmin

$ mkdir minio_data
$ minio server minio_data --console-address ":9001"

# API: http://192.168.29.103:9000  http://10.119.80.13:9000  http://127.0.0.1:9000
# RootUser: minioadmin
# RootPass: minioadmin

# Console: http://192.168.29.103:9001 http://10.119.80.13:9001 http://127.0.0.1:9001
# RootUser: minioadmin
# RootPass: minioadmin

# Command-line: https://docs.min.io/docs/minio-client-quickstart-guide
#    $ mc alias set myminio http://192.168.29.103:9000 minioadmin minioadmin

# Documentation: https://docs.min.io

Go to http://127.0.0.1:9001/buckets/ and create a bucket called mlflow.

Dagster

$ poetry shell
$ dagit -f mlops/pipeline.py

ElasticAPM

$ docker-compose -f docker-compose-monitoring.yaml up

FastAPI

$ poetry shell
$ export PYTHONPATH=.
$ python mlops/app/application.py

TODO

  • Setup with docker-compose.
  • Load testing.
  • Test cases.
  • CI/CD pipeline.
  • Drift detection.
Owner
Utsav
Utsav
WAGMA-SGD is a decentralized asynchronous SGD for distributed deep learning training based on model averaging.

WAGMA-SGD is a decentralized asynchronous SGD based on wait-avoiding group model averaging. The synchronization is relaxed by making the collectives externally-triggerable, namely, a collective can b

Shigang Li 6 Jun 18, 2022
MIT-Machine Learning with Python–From Linear Models to Deep Learning

MIT-Machine Learning with Python–From Linear Models to Deep Learning | One of the 5 courses in MIT MicroMasters in Statistics & Data Science Welcome t

2 Aug 23, 2022
Tribuo - A Java machine learning library

Tribuo - A Java prediction library (v4.1) Tribuo is a machine learning library in Java that provides multi-class classification, regression, clusterin

Oracle 1.1k Dec 28, 2022
Unofficial pytorch implementation of the paper "Context Reasoning Attention Network for Image Super-Resolution (ICCV 2021)"

CRAN Unofficial pytorch implementation of the paper "Context Reasoning Attention Network for Image Super-Resolution (ICCV 2021)" This code doesn't exa

4 Nov 11, 2021
Machine learning that just works, for effortless production applications

Machine learning that just works, for effortless production applications

Elisha Yadgaran 16 Sep 02, 2022
Send rockets to Mars with artificial intelligence(Genetic algorithm) in python.

Send Rockets To Mars With AI Send rockets to Mars with artificial intelligence(Genetic algorithm) in python. Tools Python 3 EasyDraw How to Play Insta

Mohammad Dori 3 Jul 15, 2022
nn-Meter is a novel and efficient system to accurately predict the inference latency of DNN models on diverse edge devices

A DNN inference latency prediction toolkit for accurately modeling and predicting the latency on diverse edge devices.

Microsoft 241 Dec 26, 2022
A Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming.

Master status: Development status: Package information: TPOT stands for Tree-based Pipeline Optimization Tool. Consider TPOT your Data Science Assista

Epistasis Lab at UPenn 8.9k Jan 09, 2023
Mortality risk prediction for COVID-19 patients using XGBoost models

Mortality risk prediction for COVID-19 patients using XGBoost models Using demographic and lab test data received from the HM Hospitales in Spain, I b

1 Jan 19, 2022
A Multipurpose Library for Synthetic Time Series Generation in Python

TimeSynth Multipurpose Library for Synthetic Time Series Please cite as: J. R. Maat, A. Malali, and P. Protopapas, “TimeSynth: A Multipurpose Library

278 Dec 26, 2022
Extreme Learning Machine implementation in Python

Python-ELM v0.3 --- ARCHIVED March 2021 --- This is an implementation of the Extreme Learning Machine [1][2] in Python, based on scikit-learn. From

David C. Lambert 511 Dec 20, 2022
Auto updating website that tracks closed & open issues/PRs on scikit-learn/scikit-learn.

Repository Status for Scikit-learn Live webpage Auto updating website that tracks closed & open issues/PRs on scikit-learn/scikit-learn. Running local

Thomas J. Fan 6 Dec 27, 2022
The Emergence of Individuality

The Emergence of Individuality

16 Jul 20, 2022
Little Ball of Fur - A graph sampling extension library for NetworKit and NetworkX (CIKM 2020)

Little Ball of Fur is a graph sampling extension library for Python. Please look at the Documentation, relevant Paper, Promo video and External Resour

Benedek Rozemberczki 619 Dec 14, 2022
Nevergrad - A gradient-free optimization platform

Nevergrad - A gradient-free optimization platform nevergrad is a Python 3.6+ library. It can be installed with: pip install nevergrad More installati

Meta Research 3.4k Jan 08, 2023
This repo includes some graph-based CTR prediction models and other representative baselines.

Graph-based CTR prediction This is a repository designed for graph-based CTR prediction methods, it includes our graph-based CTR prediction methods: F

Big Data and Multi-modal Computing Group, CRIPAC 47 Dec 30, 2022
OptaPy is an AI constraint solver for Python to optimize planning and scheduling problems.

OptaPy is an AI constraint solver for Python to optimize the Vehicle Routing Problem, Employee Rostering, Maintenance Scheduling, Task Assignment, School Timetabling, Cloud Optimization, Conference S

OptaPy 208 Dec 27, 2022
LinearRegression2 Tvads and CarSales

LinearRegression2_Tvads_and_CarSales This project infers the insight that how the TV ads for cars and car Sales are being linked with each other. It i

Ashish Kumar Yadav 1 Dec 29, 2021
Land Cover Classification Random Forest

You can perform Land Cover Classification on Satellite Images using Random Forest and visualize the result using Earthpy package. Make sure to install the required packages and such as

Dr. Sander Ali Khowaja 1 Jan 21, 2022
Case studies with Bayesian methods

Case studies with Bayesian methods

Baze Petrushev 8 Nov 26, 2022