icepickle is to allow a safe way to serialize and deserialize linear scikit-learn models

Overview

icepickle

It's a cooler way to store simple linear models.

The goal of icepickle is to allow a safe way to serialize and deserialize linear scikit-learn models. Not only is this much safer, but it also allows for an interesting finetuning pattern that does not require a GPU.

Installation

You can install everything with pip:

python -m pip install icepickle

Usage

Let's say that you've gotten a linear model from scikit-learn trained on a dataset.

from sklearn.linear_model import LogisticRegression
from sklearn.datasets import load_wine

X, y = load_wine(return_X_y=True)

clf = LogisticRegression()
clf.fit(X, y)

Then you could use a pickle to save the model.

from joblib import dump, load

# You can save the classifier.
dump(clf, 'classifier.joblib')

# You can load it too.
clf_reloaded = load('classifier.joblib')

But this is unsafe. The scikit-learn documentations even warns about the security concerns and compatibility issues. The goal of this package is to offer a safe alternative to pickling for simple linear models. The coefficients will be saved in a .h5 file and can be loaded into a new regression model later.

from icepickle.linear_model import save_coefficients, load_coefficients

# You can save the classifier.
save_coefficients(clf, 'classifier.h5')

# You can create a new model, with new hyperparams.
clf_reloaded = LogisticRegression()

# Load the previously trained weights in.
load_coefficients(clf_reloaded, 'classifier.h5')

This is a lot safer and there's plenty of use-cases that could be handled this way.

There's a cool finetuning-trick we can do now too!

Finetuning

Assuming that you use a stateless featurizer in your pipeline, such as HashingVectorizer or language models from whatlies, you choose to pre-train your scikit-learn model beforehand and fine-tune it later using models that offer the .partial_fit()-api. If you're unfamiliar with this api, you might appreciate this course on calmcode.

This library also comes with utilities that makes it easier to finetune systems via the .partial_fit() API. In particular we offer partial pipeline components via the icepickle.pipeline submodule.

import pandas as pd
from sklearn.linear_model import SGDClassifier, LogisticRegression
from sklearn.feature_extraction.text import HashingVectorizer

from icepickle.linear_model import save_coefficients, load_coefficients
from icepickle.pipeline import make_partial_pipeline

url = "https://raw.githubusercontent.com/koaning/icepickle/main/datasets/imdb_subset.csv"
df = pd.read_csv(url)
X, y = list(df['text']), df['label']

# Train a pre-trained model.
pretrained = LogisticRegression()
pipe = make_partial_pipeline(HashingVectorizer(), pretrained)
pipe.fit(X, y)

# Save the coefficients, safely.
save_coefficients(pretrained, 'pretrained.h5')

# Create a new model using pre-trained weights.
finetuned = SGDClassifier()
load_coefficients(finetuned, 'pretrained.h5')
new_pipe = make_partial_pipeline(HashingVectorizer(), finetuned)

# This new model can be used for fine-tuning.
for i in range(10):
    # Inside this for-loop you could consider doing data-augmentation.
    new_pipe.partial_fit(X, y)
Supported Pipeline Parts

The following pipeline components are added.

from icepickle.pipeline import (
    PartialPipeline,
    PartialFeatureUnion,
    make_partial_pipeline,
    make_partial_union,
)

These tools allow you to declare pipelines that support .partial_fit. Note that components used in these pipelines all need to have .partial_fit() implemented.

Supported Scikit-Learn Models

We unit test against the following models in our save_coefficients and load_coefficients functions.

from sklearn.linear_model import (
    SGDClassifier,
    SGDRegressor,
    LinearRegression,
    LogisticRegression,
    PassiveAggressiveClassifier,
    PassiveAggressiveRegressor,
)
Owner
vincent d warmerdam
Solving problems involving data. Mostly NLP these days. AskMeAnything[tm].
vincent d warmerdam
GroundSeg Clustering Optimized Kdtree

ground seg and clustering based on kitti velodyne data, and a additional optimized kdtree for knn and radius nn search

2 Dec 02, 2021
Home repository for the Regularized Greedy Forest (RGF) library. It includes original implementation from the paper and multithreaded one written in C++, along with various language-specific wrappers.

Regularized Greedy Forest Regularized Greedy Forest (RGF) is a tree ensemble machine learning method described in this paper. RGF can deliver better r

RGF-team 363 Dec 14, 2022
Kats is a toolkit to analyze time series data, a lightweight, easy-to-use, and generalizable framework to perform time series analysis.

Kats, a kit to analyze time series data, a lightweight, easy-to-use, generalizable, and extendable framework to perform time series analysis, from understanding the key statistics and characteristics

Facebook Research 4.1k Dec 29, 2022
Bayesian optimization based on Gaussian processes (BO-GP) for CFD simulations.

BO-GP Bayesian optimization based on Gaussian processes (BO-GP) for CFD simulations. The BO-GP codes are developed using GPy and GPyOpt. The optimizer

KTH Mechanics 8 Mar 31, 2022
Covid-polygraph - a set of Machine Learning-driven fact-checking tools

Covid-polygraph, a set of Machine Learning-driven fact-checking tools that aim to address the issue of misleading information related to COVID-19.

1 Apr 22, 2022
pywFM is a Python wrapper for Steffen Rendle's factorization machines library libFM

pywFM pywFM is a Python wrapper for Steffen Rendle's libFM. libFM is a Factorization Machine library: Factorization machines (FM) are a generic approa

João Ferreira Loff 251 Sep 23, 2022
A Lightweight Hyperparameter Optimization Tool 🚀

The mle-hyperopt package provides a simple and intuitive API for hyperparameter optimization of your Machine Learning Experiment (MLE) pipeline.

Robert Lange 137 Dec 02, 2022
Learning --> Numpy January 2022 - winter'22

Numerical-Python Numpy NumPy is a library for the Python programming language, adding support for large, multi-dimensional arrays and matrices, along

Shahzaneer Ahmed 0 Mar 12, 2022
High performance implementation of Extreme Learning Machines (fast randomized neural networks).

High Performance toolbox for Extreme Learning Machines. Extreme learning machines (ELM) are a particular kind of Artificial Neural Networks, which sol

Anton Akusok 174 Dec 07, 2022
Credit Card Fraud Detection, used the credit card fraud dataset from Kaggle

Credit Card Fraud Detection, used the credit card fraud dataset from Kaggle

Sean Zahller 1 Feb 04, 2022
Python-based implementations of algorithms for learning on imbalanced data.

ND DIAL: Imbalanced Algorithms Minimalist Python-based implementations of algorithms for imbalanced learning. Includes deep and representational learn

DIAL | Notre Dame 220 Dec 13, 2022
A collection of machine learning examples and tutorials.

machine_learning_examples A collection of machine learning examples and tutorials.

LazyProgrammer.me 7.1k Jan 01, 2023
BASTA: The BAyesian STellar Algorithm

BASTA: BAyesian STellar Algorithm Current stable version: v1.0 Important note: BASTA is developed for Python 3.8, but Python 3.7 should work as well.

BASTA team 16 Nov 15, 2022
Case studies with Bayesian methods

Case studies with Bayesian methods

Baze Petrushev 8 Nov 26, 2022
Metric learning algorithms in Python

metric-learn: Metric Learning in Python metric-learn contains efficient Python implementations of several popular supervised and weakly-supervised met

1.3k Dec 28, 2022
PROTEIN EXPRESSION ANALYSIS FOR DOWN SYNDROME

PROTEIN-EXPRESSION-ANALYSIS-FOR-DOWN-SYNDROME Down syndrome (DS) is a chromosomal disorder where organisms have an extra chromosome 21, sometimes know

1 Jan 20, 2022
Open-Source CI/CD platform for ML teams. Deliver ML products, better & faster. ⚡️🧑‍🔧

Deliver ML products, better & faster Giskard is an Open-Source CI/CD platform for ML teams. Inspect ML models visually from your Python notebook 📗 Re

Giskard 335 Jan 04, 2023
This repo implements a Topological SLAM: Deep Visual Odometry with Long Term Place Recognition (Loop Closure Detection)

This repo implements a topological SLAM system. Deep Visual Odometry (DF-VO) and Visual Place Recognition are combined to form the topological SLAM system.

Best of Australian Centre for Robotic Vision (ACRV) 32 Jun 23, 2022
A model to predict steering torque fully end-to-end

torque_model The torque model is a spiritual successor to op-smart-torque, which was a project to train a neural network to control a car's steering f

Shane Smiskol 4 Jun 03, 2022
Merlion: A Machine Learning Framework for Time Series Intelligence

Merlion is a Python library for time series intelligence. It provides an end-to-end machine learning framework that includes loading and transforming data, building and training models, post-processi

Salesforce 2.8k Jan 05, 2023