Little Ball of Fur - A graph sampling extension library for NetworKit and NetworkX (CIKM 2020)

Overview

Version repo size Arxiv build badge coverage badge benedekrozemberczki


Little Ball of Fur is a graph sampling extension library for Python.

Please look at the Documentation, relevant Paper, Promo video and External Resources.

Little Ball of Fur consists of methods that can sample from graph structured data. To put it simply it is a Swiss Army knife for graph sampling tasks. First, it includes a large variety of vertex, edge, and exploration sampling techniques. Second, it provides a unified application public interface which makes the application of sampling algorithms trivial for end-users. Implemented methods cover a wide range of networking (Networking, INFOCOM, SIGCOMM) and data mining (KDD, TKDD, ICDE) conferences, workshops, and pieces from prominent journals.


Citing

If you find Little Ball of Fur useful in your research, please consider citing the following paper:

@inproceedings{littleballoffur,
               title={{Little Ball of Fur: A Python Library for Graph Sampling}},
               author={Benedek Rozemberczki and Oliver Kiss and Rik Sarkar},
               year={2020},
               pages = {3133–3140},
               booktitle={Proceedings of the 29th ACM International Conference on Information and Knowledge Management (CIKM '20)},
               organization={ACM},
}

A simple example

Little Ball of Fur makes using modern graph subsampling techniques quite easy (see here for the accompanying tutorial). For example, this is all it takes to use Diffusion Sampling on a Watts-Strogatz graph:

import networkx as nx
from littleballoffur import DiffusionSampler

graph = nx.newman_watts_strogatz_graph(1000, 20, 0.05)

sampler = DiffusionSampler()

new_graph = sampler.sample(graph)

Methods included

In detail, the following sampling methods were implemented.

Node Sampling

Edge Sampling

Exploration Based Sampling

Head over to our documentation to find out more about installation and data handling, a full list of implemented methods, and datasets. For a quick start, check out our examples.

If you notice anything unexpected, please open an issue and let us know. If you are missing a specific method, feel free to open a feature request. We are motivated to constantly make Little Ball of Fur even better.


Installation

Little Ball of Fur can be installed with the following pip command.

$ pip install littleballoffur

As we create new releases frequently, upgrading the package casually might be beneficial.

$ pip install littleballoffur --upgrade

Running examples

As part of the documentation we provide a number of use cases to show how to use various sampling techniques. These can accessed here with detailed explanations.

Besides the case studies we provide synthetic examples for each model. These can be tried out by running the scripts in the examples folder. You can try out the random walk sampling example by running:

$ cd examples
$ python ./exploration_sampling/randomwalk_sampler.py

Running tests

$ python setup.py test

License

Comments
  • change initial num of nodes formula

    change initial num of nodes formula

    to avoid having more initial nodes than the requested final number of nodes (when the final number of nodes requested is much smaller than the graph size).

    opened by bricaud 7
  • Error install dependency networkit==7.1

    Error install dependency networkit==7.1

    I didn't manage to install littleballoffur due to one of its dependency that seems outdated. It didn't work to install networkit==7.1 but I did manage to run its latest version. However, littleballoffur runs on networkit==7.1.

    I am using a Jupyter notebook as an environment and the following system specs: posix Darwin 21.4.0 3.8.12 (default, Mar 17 2022, 14:54:15) [Clang 13.0.0 (clang-1300.0.29.30)]

    The specific error output:

    Collecting networkit==7.1
      Using cached networkit-7.1.tar.gz (3.1 MB)
      Preparing metadata (setup.py) ... error
      error: subprocess-exited-with-error
      
      × python setup.py egg_info did not run successfully.
      │ exit code: 1
      ╰─> [2 lines of output]
          ERROR: No suitable compiler found. Install any of these:  ['g++', 'g++-8', 'g++-7', 'g++-6.1', 'g++-6', 'g++-5.3', 'g++-5.2', 'g++-5.1', 'g++-5', 'g++-4.9', 'g++-4.8', 'clang++', 'clang++-3.8', 'clang++-3.7']
          If using AppleClang, OpenMP might be needed. Install with: 'brew install libomp'
          [end of output]
      
      note: This error originates from a subprocess, and is likely not a problem with pip.
    error: metadata-generation-failed
    
    × Encountered error while generating package metadata.
    ╰─> See above for output.
    
    note: This is an issue with the package mentioned above, not pip.
    hint: See above for details.
    
    

    Please note that: libomp 14.0.0 is already installed and up-to-date.

    Is there some way I could install the library on networkit v10? Thanks a lot!

    opened by CristinBSE 6
  • Node attributes are not copied from original graph

    Node attributes are not copied from original graph

    Breadth and Depth First Search return me subgraphs without correct attributes on nodes/edges. Actually, I found that the dict containing those attributes has been completely deleted in the sampled graph. Is this a known issue? Is the sampler supposed to work in this way?

    opened by jungla88 6
  • Why can't I use the graph imported by nx.read_edgelist()

    Why can't I use the graph imported by nx.read_edgelist()

    graph = nx.read_edgelist("filename", nodetype=int, data=(("Weight", int),))

    error : AssertionError: Graph is not connected. why? 'graph' is a networkx graph

    opened by DeathSentence 5
  • Spikyball exploration sampling

    Spikyball exploration sampling

    You might find the change a bit invasive (understandable :) This adds a new family exploration sampling method (spikyball) described in the paper Spikyball sampling: Exploring large networks via an inhomogeneous filtered diffusion available here https://arxiv.org/abs/2010.11786 and submitted for publication in Combinatorial Optimization, Graph, and Network Algorithms journal. The version number has been increased in order not to collide with official releases of lbof, you might want to change this...

    opened by naspert 4
  • Assumptions on graph properties

    Assumptions on graph properties

    Hi there,

    I am wondering if it would be possible to relax some constrain the graph has to satisfy in order to start an exploration on it. In particular, the requirement of connectivity seems a bit strong to me. I think a graph sampling procedure could easily deal with such property, since in the case the graph is not connected the sampling could take place on the single connected components or the exploration could rely on the neighborhood of the current node explored. For node sampling strategies like BFS and DFS looks pretty natural to me, also for Random Walk Sampling (maybe the one with the restart probability could be a little tricky). Something strange could probably happen for edge sampling if the connectivity property is not satisfied. Do you see any possibility to extend little ball of fur to such type of graphs? What was the reason that bring you to assume the connectivity property for graphs?

    Thank you !

    opened by jungla88 3
  • Error importing DiffusionSampler

    Error importing DiffusionSampler

    Hello,

    First of all, thank you for your great work building this library. Great extension to NetworkX.

    I am facing an issue when trying to import the DiffusionSampler specifically. All the other samplers get imported just fine. However the DiffusionSampler raises import issue.

    I am using a Jupyter notebook as an environment.

    The specific error output:

    ---------------------------------------------------------------------------
    ImportError                               Traceback (most recent call last)
    <ipython-input-29-fbd222d9c756> in <module>
    ----> 1 from littleballoffur import DiffusionSampler
          2 
          3 
          4 model = DiffusionSampler()
          5 new_graph = model.sample(wd50k_connected_relabeled)
    
    ImportError: cannot import name 'DiffusionSampler' from 'littleballoffur'
    

    Is this replicable?

    Thank you in advance for looking into it.

    opened by DimitrisAlivas 3
  • ForestFireSampler throws exceptions for some seed values

    ForestFireSampler throws exceptions for some seed values

    Hi,

    I am trying to sample an undirected, connected graph of 5559 nodes and 10804 edges into a sample of 100 nodes. As I loop over the "creation of samples" part, I am altering the seed for the ForeFireSampler every time to obtain a different sample.

    E.g. seed_value = random.randint(1,2147483646) sampler = ForestFireSampler(100, seed=seed_value )

    However, for some runs I get an exception thrown, which is also reproducible. I assume it is related to specific seed values which the sampler doesn´t seem to be able to handle. An example is seed value 1176372277.

    Traceback (most recent call last): File "/project/topology_extraction.py", line 472, in abstraction_G = graph_sampling(S) File "/project/topology_extraction.py", line 234, in graph_sampling new_graph = sampler.sample(S) File "/usr/local/lib/python3.8/dist-packages/littleballoffur/exploration_sampling/forestfiresampler.py", line 74, in sample self._start_a_fire(graph) File "/usr/local/lib/python3.8/dist-packages/littleballoffur/exploration_sampling/forestfiresampler.py", line 47, in _start_a_fire top_node = node_queue.popleft() IndexError: pop from an empty deque

    Process finished with exit code 1

    I believe this is a bug in the library.

    Thanks! Nils

    opened by nrodday 3
  • Error in forest fire sampling

    Error in forest fire sampling

    Hi,

    While running the forest fire sampling code, I got an error that it is trying to pop an element from an empty deque.

    File "/opt/anaconda3/lib/python3.7/site-packages/littleballoffur/exploration_sampling/forestfiresampler.py", line 47, in _start_a_fire top_node = node_queue.popleft() IndexError: pop from an empty deque

    I am not sure if it was due to data or needs an empty/try-catch check or should it be handled by application code. Hence opened an issue.

    Thank you

    opened by apurvamulay 2
  • Broken link in Readme (readdthedocs)

    Broken link in Readme (readdthedocs)

    https://littleballoffur.readthedocs.io/en/latest/notes/introduction.html

    as of 2020-05-18 9:35 AM EDT, it says "sorry this page does not exist"

    opened by bbrewington 1
  • Error in line 254 _checking_indexing() of backend.py

    Error in line 254 _checking_indexing() of backend.py

    According to your code, once numeric_indices != node_indices, the error raises. Under my scenario, I constructed a networkx graph in which the indices of nodes start from '1', and then, the sampler did not work. This error will be triggered if the indices of nodes in a networkx graph do not start from '0'. I have to adjust my graph such that the indices of nodes start from '0' to utilize your samplers. I hope you can refine this part of the code to avoid someone else meets this problem.

    opened by Haoran-Young 0
Releases(v_20200)
Owner
Benedek Rozemberczki
Machine Learning Engineer at AstraZeneca and PhD candidate at The University of Edinburgh.
Benedek Rozemberczki
MasTrade is a trading bot in baselines3,pytorch,gym

mastrade MasTrade is a trading bot in baselines3,pytorch,gym idea we have for example 1 btc and we buy a crypto with it with market option to trade in

Masoud Azizi 18 May 24, 2022
moDel Agnostic Language for Exploration and eXplanation

moDel Agnostic Language for Exploration and eXplanation Overview Unverified black box model is the path to the failure. Opaqueness leads to distrust.

Model Oriented 1.2k Jan 04, 2023
ML Optimizers from scratch using JAX

Toy implementations of some popular ML optimizers using Python/JAX

Shreyansh Singh 38 Jul 29, 2022
CorrProxies - Optimizing Machine Learning Inference Queries with Correlative Proxy Models

CorrProxies - Optimizing Machine Learning Inference Queries with Correlative Proxy Models

ZhihuiYangCS 8 Jun 07, 2022
30 Days Of Machine Learning Using Pytorch

Objective of the repository is to learn and build machine learning models using Pytorch. 30DaysofML Using Pytorch

Mayur 119 Nov 24, 2022
icepickle is to allow a safe way to serialize and deserialize linear scikit-learn models

icepickle It's a cooler way to store simple linear models. The goal of icepickle is to allow a safe way to serialize and deserialize linear scikit-lea

vincent d warmerdam 24 Dec 09, 2022
A simple example of ML classification, cross validation, and visualization of feature importances

Simple-Classifier This is a basic example of how to use several different libraries for classification and ensembling, mostly with sklearn. Example as

Rob 2 Aug 25, 2022
Reggy - Regressions with arbitrarily complex regularization terms

reggy Regressions with arbitrarily complex regularization terms. Currently suppo

Kim 1 Jan 20, 2022
A Python implementation of the Robotics Toolbox for MATLAB

Robotics Toolbox for Python A Python implementation of the Robotics Toolbox for MATLAB® GitHub repository Documentation Wiki (examples and details) Sy

Peter Corke 1.2k Jan 07, 2023
Library for machine learning stacking generalization.

stacked_generalization Implemented machine learning *stacking technic[1]* as handy library in Python. Feature weighted linear stacking is also availab

114 Jul 19, 2022
PennyLane is a cross-platform Python library for differentiable programming of quantum computers

PennyLane is a cross-platform Python library for differentiable programming of quantum computers. Train a quantum computer the same way as a neural ne

PennyLaneAI 1.6k Jan 01, 2023
Machine Learning toolbox for Humans

Reproducible Experiment Platform (REP) REP is ipython-based environment for conducting data-driven research in a consistent and reproducible way. Main

Yandex 663 Dec 31, 2022
Simple, fast, and parallelized symbolic regression in Python/Julia via regularized evolution and simulated annealing

Parallelized symbolic regression built on Julia, and interfaced by Python. Uses regularized evolution, simulated annealing, and gradient-free optimization.

Miles Cranmer 924 Jan 03, 2023
Lightweight Machine Learning Experiment Logging 📖

Simple logging of statistics, model checkpoints, plots and other objects for your Machine Learning Experiments (MLE). Furthermore, the MLELogger comes with smooth multi-seed result aggregation and co

Robert Lange 65 Dec 08, 2022
Nixtla is an open-source time series forecasting library.

Nixtla Nixtla is an open-source time series forecasting library. We are helping data scientists and developers to have access to open source state-of-

Nixtla 401 Jan 08, 2023
A model to predict steering torque fully end-to-end

torque_model The torque model is a spiritual successor to op-smart-torque, which was a project to train a neural network to control a car's steering f

Shane Smiskol 4 Jun 03, 2022
A python library for Bayesian time series modeling

PyDLM Welcome to pydlm, a flexible time series modeling library for python. This library is based on the Bayesian dynamic linear model (Harrison and W

Sam 438 Dec 17, 2022
High performance implementation of Extreme Learning Machines (fast randomized neural networks).

High Performance toolbox for Extreme Learning Machines. Extreme learning machines (ELM) are a particular kind of Artificial Neural Networks, which sol

Anton Akusok 174 Dec 07, 2022
Merlion: A Machine Learning Framework for Time Series Intelligence

Merlion is a Python library for time series intelligence. It provides an end-to-end machine learning framework that includes loading and transforming data, building and training models, post-processi

Salesforce 2.8k Jan 05, 2023
Distributed scikit-learn meta-estimators in PySpark

sk-dist: Distributed scikit-learn meta-estimators in PySpark What is it? sk-dist is a Python package for machine learning built on top of scikit-learn

Ibotta 282 Dec 09, 2022