Iris-Heroku - Putting a Machine Learning Model into Production with Flask and Heroku

Overview

Puesta en Producción de un modelo de aprendizaje automático con Flask y Heroku

Portada

La creación de un proyecto de aprendizaje automático en un jupyter notebook ejecutaándose en local para unos datos de entrada controlados es una cosa, pero implementar el modelo como una aplicación web y su posterior puesta en producción como servicio para usuarios en la red es otra cosa muy distinta.

Para que un producto basado en el aprendizaje automático tenga éxito, es necesario crear servicios que otros equipos puedan usar o un producto donde los usuarios puedan interactuar. Para ello, el objetivo final es brindar el modelo como un servicio, basándose en un concepto llamado API. Una API es la forma en que los sistemas informáticos se comunican entre sí, actuando como un agente que lleva la información del usuario al servidor y luego nuevamente del servidor al usuario devolviendo la respuesta. Flask proporciona esa capacidad, actuando como una API entre su modelo y el archivo HTML.

Por otra parte utilizaremos Heroku como plataforma en la nube para crear nuestro servicio. Heroku es uno de los PaaS más utilizados en la actualidad en entornos empresariales por su fuerte enfoque en resolver el despliegue de una aplicación. Ademas te permite manejar los servidores y sus configuraciones, escalamiento y la administración. A Heroku solo le dices qué lenguaje de backend estás utilizando (Python, Java, PHP, NodeJS…) o qué base de datos vas a utilizar y te preocupas únicamente por el desarrollo de tu aplicación. Heroku es gratuito para aplicaciones de poco consumo y posteriormente hablaremos de como crear una cuenta gratuita para desplegar nuestro servicio.

Introducción a la Aplicación a desarrollar.

Como hemos comentado, el objetivo de este artículo es crear un modelo de aprendizaje automático alojado en un servidor web que nos preste el servicio de hacer predicciones vía http. Para ello vamos a estructura el proyecto en 4 partes:

  • Entorno de desarrollo.
  • Implementación y entrenamiento del Modelo.
  • Implementación de la API en Flask.
  • Despliegue del servicio web en Heroku

Entorno de desarrollo

Antes que nada vamos a necesitar preparar el entorno de desarrollo para la implementación de la aplicación. Para ello primero procedemos a clonar el repositorio base donde os he dejado preparado todo el código necesario para el desarrollo de esta práctica.

cd you_proyect
git clone https://github.com/jaisenbe58r/Iris_Heroku.git

El proyecto se estructura de la siguiente manera:

your proyect
-- checkpoints
---- model.pkl
-- images
-- model
---- model.py
-- templates
---- index.html
---- result.html
-- .gitignore
-- .slugignore
-- Procfile
-- readme.md
-- requirements.txt
-- script.py

En el directorio de su proyecto, comencemos creando un virtualenv:

python -m venv venv/

Y activemos con el el entorno virtual:

\env\Scripts\activate.bat

Instalamos todas las dependencias del proyecto:

pip install -r requirements.txt

Con esto ya tendríamos preparado todo el entorno para el desarrollo de nuestra aplicación.

Implementación y entrenamiento del Modelo.

El modelo de aprendizaje automático va ser el encargado de clasificar entre 3 variedades de Flor de Iris. estas variedades o clases son:

  • Iris Setosa
  • Iris Versicolour
  • Iris Virginica

Esta clasificación será el resultado de la inferencia de unos datos de entrada introducidos por el usuario:

  • largo del sépalo en cm
  • ancho del sépalo en cm
  • largo de pétalo en cm
  • ancho de pétalo en cm

Puede encontrar más información sobre el dataset en el siguiente enlace: https://archive.ics.uci.edu/ml/datasets/iris

En nuestro caso utilizaremos el módulo datasets de la librería ```sklearn`` y lo dividimos entre conjuntos de entrenamiento y test:

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split

X, y = load_iris(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, stratify=y)

Vamos a utilizar como modelo un RandomForestClassifier() entrenado con el subconjunto de entrenamiento y validado con el conjunto de test.

X, y = load_iris(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, stratify=y)

clf = RandomForestClassifier()
print(clf.fit(X_train, y_train).score(X_test, y_test))

>>> 0.933

Posteriormente al entrenamiento, serializamos el modelo y lo guardamos en la carpeta checkpoints/.

filename = 'checkpoints/model.pkl'
pickle.dump(clf, open(filename, 'wb'))

No está de mal, validar estos pasos cargando el modelo y hacer una nueva predicción con el mismo conjunto de test para validar los resultados

loaded_model = pickle.load(open(filename, 'rb'))
result = loaded_model.score(X_test, y_test)
print(result)

>>> 0.933

También comprobamos a hacer una predicción con datos reales para ver la respuesta:

print(loaded_model.predict([[5.6, 2.7, 4.2, 1.3]]))

>>> [1]

Con esto, ya tenemos el modelo preparado para servirlo desde una API.

Implementación de la API en Flask.

Comenzamos por explicar en base a una aplicación Flask más simple:

from flask import Flask

app=Flask(__name__)

@app.route('/',methods=['GET','POST'])
def main():
    return str('Hello World!! ')

if __name__=="__main__":
    app.run()

Explicando las líneas más importantes tenemos:

app=Flask(__name__)

Aquí, estamos asignando el constructor Flask a una variable que necesitamos para ejecutar todos los procesos.

@app.route('/',methods=['GET','POST'])

app.route() es un decorador en Python. En Flask, cada función se activará cuando vaya a una página específica, todo el tráfico en esta URL invocará la función main().

Con esto bastaría para realizar su primera aplicación Flask. En nuestro caso necesitamos que la función main() fuera una función que desplegará el modelo para hacer las predicciones de los inputs recibidos por el método POST. Para ello, utilizamos una función definida como result()que se encargará de recoger los inputs de entrada al modelo, transformarlos a una lista acorde a lo esperado por el modelo para posteriormente llamar a la función value_predictor()donde se realizarán las predicciones. Una vez tengamos los resultados, se mostrarán en el template result.html como podemos ver más adelante.

#importing libraries
import os
import numpy as np
import flask
import pickle
from flask import Flask, render_template, request

#creating instance of the class
app=Flask(__name__)

#to tell flask what url shoud trigger the function index()
@app.route('/')
@app.route('/index')
def index():
    return flask.render_template('index.html')

def ValuePredictor(to_predict_list):
    to_predict = np.array(to_predict_list).reshape(1, 4)
    loaded_model = pickle.load(open("checkpoints/model.pkl","rb"))
    result = loaded_model.predict(to_predict)
    return result[0]

@app.route('/result', methods = ['POST'])
def result():
    if request.method == 'POST':
        to_predict_list = request.form.to_dict()
        to_predict_list = list(to_predict_list.values())
        try:
            to_predict_list = list(map(float, to_predict_list))
            result = ValuePredictor(to_predict_list)
            if int(result)==0:
                prediction='Iris-Setosa'
            elif int(result)==1:
                prediction='Iris-Virginica'
            elif int(result)==2:
                prediction='Iris-Versicolour'
            else:
                prediction=f'{int(result)} No-definida'
        except ValueError:
            prediction='Error en el formato de los datos'

        return render_template("result.html", prediction=prediction)

if __name__=="__main__":

    app.run(port=5001)

Como particularidad, podemos observar en el código siguiente que disponemos de dos rutas, /index y result, la primera se lanzará nada más se despliegue la API y es la encargada de recoger los datos a a partir del template index.html:

index_html

Una vez completados los campos, se pulsa el botón submit que nos enviará a la ruta /result donde se desplegará el template result.html con el resultado final de la predicción:

result_html

Para probar nuestra API en local bastaría con ejecutar el script y acceder la la URL proporcionada por consola:

python script.py

consola

Despliegue del servicio web en Heroku

Como hemos comentado en la introducción, Heroku es una plataforma como servicio (PaaS) que permite a los desarrolladores crear, ejecutar y operar aplicaciones completamente en la nube en lugar de hacerlo localmente en su máquina. En este proyecto lo implementaremos usando GitHub automáticamente cada vez que hagamos un pull a la rama deploy

Antes de implementar su código, debemos crear una cuenta en Heroku:

heroku login

Creando una aplicación Heroku

Para implementar el proyecto primero debemos crear una aplicación Heroku.

heroku apps:create web_app_iris

Archivo requirements.txt

Este es el primer punto de entrada al programa. Instalará todas las dependencias necesarias para ejecutar su Código. requirements.txt le dirá a heroku que este proyecto requerirá todas estas librerias para ejecutar correctamente la aplicación.

Procfile

Heroku requiere que Procfile esté presente en el directorio raíz de su aplicación. Le dirá a Heroku cómo ejecutar la aplicación. Asegúrese de que sea un archivo simple sin extensión. La parte a la izquierda de los dos puntos es el tipo de proceso y la parte a la derecha es el comando a ejecutar para iniciar ese proceso. En esto, podemos decir en qué puerto se debe implementar el código y puede iniciar y detener estos procesos.

web: gunicorn script:app

Este archivo le dice a heroku que queremos usar el proceso web con el comando gunicorn y el nombre de la aplicación.

Implementar en Heroku

Asegúrese de que el archivo Procfile y el requirements.txt estén presentes en el directorio raíz de su aplicación. Posteriormente procedemos a crear el repositorio en github y crear la rama deploy para conectar el despliegue automático desde GitHub.

Una vez creado el repositorio en GitHub creamos la rama deploy.

En el dashboard principal de la aplicación HEROKU veremos desplegada la aplicación:

artefacto

Entramos dentro

git branch deploy
git checkout deploy
git push

Una vez creada la rama deployvamos a configurar el despliegue automático a Heroku desde GitHub, para ello entramos dentro del proyecto y seleccionamos la ventana Deploy:

deploy

Seleccionamos el método de despliegue como GitHub y conectamos el repositorio del proyecto en GitHub:

method

Una vez conectado el repositorio, seleccionamos la rama deployy habilitamos el despliegue automático:

enable_deploy

Con esto ya podemos desplegar nuestro servicio automáticamente cada vez que se haga un push de la rama deploy. Para ello, vamos a comprobarlo realizando el pushy situándonos en la pestaña de Activity del proyecto Heroku para ver el estado del despliegue:

despliegue_on

Una vez completado el despliegue, ya tendremos acceso a la app desde el botón Open app situado a la parte de arriba a la derecha:

completado

Con ello, ya tendríamos acceso a nuestra aplicación desplegada como un servicio dentro de Heroku:

comwebpletado

Conclusiones

Con este artículo, mi intención ha sido que puedan desplegar de forma exitosa este tipo de aplicaciones de manera sencilla y robusta para poder probar todas sus aplicaciones sin tener que preocuparse de toda la infraestructura IT de crear un servicio desde cero.

Espero que os haya sido de utilidad y que lo tengáis en cuenta como una herramienta más para el desarrollo de vuestras aplicaciones basadas en aprendizaje automático.

Owner
Jesùs Guillen
Jesùs Guillen
SIMD-accelerated bitwise hamming distance Python module for hexidecimal strings

hexhamming What does it do? This module performs a fast bitwise hamming distance of two hexadecimal strings. This looks like: DEADBEEF = 1101111010101

Michael Recachinas 12 Oct 14, 2022
BudouX is the successor to Budou, the machine learning powered line break organizer tool.

BudouX Standalone. Small. Language-neutral. BudouX is the successor to Budou, the machine learning powered line break organizer tool. It is standalone

Google 868 Jan 05, 2023
Backprop makes it simple to use, finetune, and deploy state-of-the-art ML models.

Backprop makes it simple to use, finetune, and deploy state-of-the-art ML models. Solve a variety of tasks with pre-trained models or finetune them in

Backprop 227 Dec 10, 2022
Automatically build ARIMA, SARIMAX, VAR, FB Prophet and XGBoost Models on Time Series data sets with a Single Line of Code. Now updated with Dask to handle millions of rows.

Auto_TS: Auto_TimeSeries Automatically build multiple Time Series models using a Single Line of Code. Now updated with Dask. Auto_timeseries is a comp

AutoViz and Auto_ViML 519 Jan 03, 2023
Cohort Intelligence used to solve various mathematical functions

Cohort-Intelligence-for-Mathematical-Functions About Cohort Intelligence : Cohort Intelligence ( CI ) is an optimization technique. It attempts to mod

Aayush Khandekar 2 Oct 25, 2021
Tools for Optuna, MLflow and the integration of both.

HPOflow - Sphinx DOC Tools for Optuna, MLflow and the integration of both. Detailed documentation with examples can be found here: Sphinx DOC Table of

Telekom Open Source Software 17 Nov 20, 2022
A project based example of Data pipelines, ML workflow management, API endpoints and Monitoring.

MLOps template with examples for Data pipelines, ML workflow management, API development and Monitoring.

Utsav 33 Dec 03, 2022
ML Optimizers from scratch using JAX

Toy implementations of some popular ML optimizers using Python/JAX

Shreyansh Singh 38 Jul 29, 2022
BentoML is a flexible, high-performance framework for serving, managing, and deploying machine learning models.

Model Serving Made Easy BentoML is a flexible, high-performance framework for serving, managing, and deploying machine learning models. Supports multi

BentoML 4.4k Jan 04, 2023
Simulate & classify transient absorption spectroscopy (TAS) spectral features for bulk semiconducting materials (Post-DFT)

PyTASER PyTASER is a Python (3.9+) library and set of command-line tools for classifying spectral features in bulk materials, post-DFT. The goal of th

Materials Design Group 4 Dec 27, 2022
Crunchdao - Python API for the Crunchdao machine learning tournament

Python API for the Crunchdao machine learning tournament Interact with the Crunc

3 Jan 19, 2022
Decision Tree Regression algorithm implemented on Python from scratch.

Decision_Tree_Regression I implemented the decision tree regression algorithm on Python. Unlike regular linear regression, this algorithm is used when

1 Dec 22, 2021
A simple python program which predicts the success of a movie based on it's type, actor, actress and director

Movie-Success-Prediction A simple python program which predicts the success of a movie based on it's type, actor, actress and director. The program us

Mahalinga Prasad R N 1 Dec 17, 2021
Uses WiFi signals :signal_strength: and machine learning to predict where you are

Uses WiFi signals and machine learning (sklearn's RandomForest) to predict where you are. Even works for small distances like 2-10 meters.

Pascal van Kooten 5k Jan 09, 2023
Sleep stages are classified with the help of ML. We have used 4 different ML algorithms (SVM, KNN, RF, NN) to demonstrate them

Sleep stages are classified with the help of ML. We have used 4 different ML algorithms (SVM, KNN, RF, NN) to demonstrate them.

Anirudh Edpuganti 3 Apr 03, 2022
Automated Machine Learning with scikit-learn

auto-sklearn auto-sklearn is an automated machine learning toolkit and a drop-in replacement for a scikit-learn estimator. Find the documentation here

AutoML-Freiburg-Hannover 6.7k Jan 07, 2023
using Machine Learning Algorithm to classification AppleStore application

AppleStore-classification-with-Machine-learning-Algo- using Machine Learning Algorithm to classification AppleStore application. the first step : 1: p

Mohammed Hussien 2 May 02, 2022
A toolkit for making real world machine learning and data analysis applications in C++

dlib C++ library Dlib is a modern C++ toolkit containing machine learning algorithms and tools for creating complex software in C++ to solve real worl

Davis E. King 11.6k Jan 02, 2023
Examples and code for the Practical Machine Learning workshop series

Practical Machine Learning Workshop Series Practical Machine Learning for Quantitative Finance Post conference workshop at the WBS Spring Conference D

CompatibL 21 Jun 25, 2022
Send rockets to Mars with artificial intelligence(Genetic algorithm) in python.

Send Rockets To Mars With AI Send rockets to Mars with artificial intelligence(Genetic algorithm) in python. Tools Python 3 EasyDraw How to Play Insta

Mohammad Dori 3 Jul 15, 2022