Iris-Heroku - Putting a Machine Learning Model into Production with Flask and Heroku

Overview

Puesta en Producción de un modelo de aprendizaje automático con Flask y Heroku

Portada

La creación de un proyecto de aprendizaje automático en un jupyter notebook ejecutaándose en local para unos datos de entrada controlados es una cosa, pero implementar el modelo como una aplicación web y su posterior puesta en producción como servicio para usuarios en la red es otra cosa muy distinta.

Para que un producto basado en el aprendizaje automático tenga éxito, es necesario crear servicios que otros equipos puedan usar o un producto donde los usuarios puedan interactuar. Para ello, el objetivo final es brindar el modelo como un servicio, basándose en un concepto llamado API. Una API es la forma en que los sistemas informáticos se comunican entre sí, actuando como un agente que lleva la información del usuario al servidor y luego nuevamente del servidor al usuario devolviendo la respuesta. Flask proporciona esa capacidad, actuando como una API entre su modelo y el archivo HTML.

Por otra parte utilizaremos Heroku como plataforma en la nube para crear nuestro servicio. Heroku es uno de los PaaS más utilizados en la actualidad en entornos empresariales por su fuerte enfoque en resolver el despliegue de una aplicación. Ademas te permite manejar los servidores y sus configuraciones, escalamiento y la administración. A Heroku solo le dices qué lenguaje de backend estás utilizando (Python, Java, PHP, NodeJS…) o qué base de datos vas a utilizar y te preocupas únicamente por el desarrollo de tu aplicación. Heroku es gratuito para aplicaciones de poco consumo y posteriormente hablaremos de como crear una cuenta gratuita para desplegar nuestro servicio.

Introducción a la Aplicación a desarrollar.

Como hemos comentado, el objetivo de este artículo es crear un modelo de aprendizaje automático alojado en un servidor web que nos preste el servicio de hacer predicciones vía http. Para ello vamos a estructura el proyecto en 4 partes:

  • Entorno de desarrollo.
  • Implementación y entrenamiento del Modelo.
  • Implementación de la API en Flask.
  • Despliegue del servicio web en Heroku

Entorno de desarrollo

Antes que nada vamos a necesitar preparar el entorno de desarrollo para la implementación de la aplicación. Para ello primero procedemos a clonar el repositorio base donde os he dejado preparado todo el código necesario para el desarrollo de esta práctica.

cd you_proyect
git clone https://github.com/jaisenbe58r/Iris_Heroku.git

El proyecto se estructura de la siguiente manera:

your proyect
-- checkpoints
---- model.pkl
-- images
-- model
---- model.py
-- templates
---- index.html
---- result.html
-- .gitignore
-- .slugignore
-- Procfile
-- readme.md
-- requirements.txt
-- script.py

En el directorio de su proyecto, comencemos creando un virtualenv:

python -m venv venv/

Y activemos con el el entorno virtual:

\env\Scripts\activate.bat

Instalamos todas las dependencias del proyecto:

pip install -r requirements.txt

Con esto ya tendríamos preparado todo el entorno para el desarrollo de nuestra aplicación.

Implementación y entrenamiento del Modelo.

El modelo de aprendizaje automático va ser el encargado de clasificar entre 3 variedades de Flor de Iris. estas variedades o clases son:

  • Iris Setosa
  • Iris Versicolour
  • Iris Virginica

Esta clasificación será el resultado de la inferencia de unos datos de entrada introducidos por el usuario:

  • largo del sépalo en cm
  • ancho del sépalo en cm
  • largo de pétalo en cm
  • ancho de pétalo en cm

Puede encontrar más información sobre el dataset en el siguiente enlace: https://archive.ics.uci.edu/ml/datasets/iris

En nuestro caso utilizaremos el módulo datasets de la librería ```sklearn`` y lo dividimos entre conjuntos de entrenamiento y test:

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split

X, y = load_iris(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, stratify=y)

Vamos a utilizar como modelo un RandomForestClassifier() entrenado con el subconjunto de entrenamiento y validado con el conjunto de test.

X, y = load_iris(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, stratify=y)

clf = RandomForestClassifier()
print(clf.fit(X_train, y_train).score(X_test, y_test))

>>> 0.933

Posteriormente al entrenamiento, serializamos el modelo y lo guardamos en la carpeta checkpoints/.

filename = 'checkpoints/model.pkl'
pickle.dump(clf, open(filename, 'wb'))

No está de mal, validar estos pasos cargando el modelo y hacer una nueva predicción con el mismo conjunto de test para validar los resultados

loaded_model = pickle.load(open(filename, 'rb'))
result = loaded_model.score(X_test, y_test)
print(result)

>>> 0.933

También comprobamos a hacer una predicción con datos reales para ver la respuesta:

print(loaded_model.predict([[5.6, 2.7, 4.2, 1.3]]))

>>> [1]

Con esto, ya tenemos el modelo preparado para servirlo desde una API.

Implementación de la API en Flask.

Comenzamos por explicar en base a una aplicación Flask más simple:

from flask import Flask

app=Flask(__name__)

@app.route('/',methods=['GET','POST'])
def main():
    return str('Hello World!! ')

if __name__=="__main__":
    app.run()

Explicando las líneas más importantes tenemos:

app=Flask(__name__)

Aquí, estamos asignando el constructor Flask a una variable que necesitamos para ejecutar todos los procesos.

@app.route('/',methods=['GET','POST'])

app.route() es un decorador en Python. En Flask, cada función se activará cuando vaya a una página específica, todo el tráfico en esta URL invocará la función main().

Con esto bastaría para realizar su primera aplicación Flask. En nuestro caso necesitamos que la función main() fuera una función que desplegará el modelo para hacer las predicciones de los inputs recibidos por el método POST. Para ello, utilizamos una función definida como result()que se encargará de recoger los inputs de entrada al modelo, transformarlos a una lista acorde a lo esperado por el modelo para posteriormente llamar a la función value_predictor()donde se realizarán las predicciones. Una vez tengamos los resultados, se mostrarán en el template result.html como podemos ver más adelante.

#importing libraries
import os
import numpy as np
import flask
import pickle
from flask import Flask, render_template, request

#creating instance of the class
app=Flask(__name__)

#to tell flask what url shoud trigger the function index()
@app.route('/')
@app.route('/index')
def index():
    return flask.render_template('index.html')

def ValuePredictor(to_predict_list):
    to_predict = np.array(to_predict_list).reshape(1, 4)
    loaded_model = pickle.load(open("checkpoints/model.pkl","rb"))
    result = loaded_model.predict(to_predict)
    return result[0]

@app.route('/result', methods = ['POST'])
def result():
    if request.method == 'POST':
        to_predict_list = request.form.to_dict()
        to_predict_list = list(to_predict_list.values())
        try:
            to_predict_list = list(map(float, to_predict_list))
            result = ValuePredictor(to_predict_list)
            if int(result)==0:
                prediction='Iris-Setosa'
            elif int(result)==1:
                prediction='Iris-Virginica'
            elif int(result)==2:
                prediction='Iris-Versicolour'
            else:
                prediction=f'{int(result)} No-definida'
        except ValueError:
            prediction='Error en el formato de los datos'

        return render_template("result.html", prediction=prediction)

if __name__=="__main__":

    app.run(port=5001)

Como particularidad, podemos observar en el código siguiente que disponemos de dos rutas, /index y result, la primera se lanzará nada más se despliegue la API y es la encargada de recoger los datos a a partir del template index.html:

index_html

Una vez completados los campos, se pulsa el botón submit que nos enviará a la ruta /result donde se desplegará el template result.html con el resultado final de la predicción:

result_html

Para probar nuestra API en local bastaría con ejecutar el script y acceder la la URL proporcionada por consola:

python script.py

consola

Despliegue del servicio web en Heroku

Como hemos comentado en la introducción, Heroku es una plataforma como servicio (PaaS) que permite a los desarrolladores crear, ejecutar y operar aplicaciones completamente en la nube en lugar de hacerlo localmente en su máquina. En este proyecto lo implementaremos usando GitHub automáticamente cada vez que hagamos un pull a la rama deploy

Antes de implementar su código, debemos crear una cuenta en Heroku:

heroku login

Creando una aplicación Heroku

Para implementar el proyecto primero debemos crear una aplicación Heroku.

heroku apps:create web_app_iris

Archivo requirements.txt

Este es el primer punto de entrada al programa. Instalará todas las dependencias necesarias para ejecutar su Código. requirements.txt le dirá a heroku que este proyecto requerirá todas estas librerias para ejecutar correctamente la aplicación.

Procfile

Heroku requiere que Procfile esté presente en el directorio raíz de su aplicación. Le dirá a Heroku cómo ejecutar la aplicación. Asegúrese de que sea un archivo simple sin extensión. La parte a la izquierda de los dos puntos es el tipo de proceso y la parte a la derecha es el comando a ejecutar para iniciar ese proceso. En esto, podemos decir en qué puerto se debe implementar el código y puede iniciar y detener estos procesos.

web: gunicorn script:app

Este archivo le dice a heroku que queremos usar el proceso web con el comando gunicorn y el nombre de la aplicación.

Implementar en Heroku

Asegúrese de que el archivo Procfile y el requirements.txt estén presentes en el directorio raíz de su aplicación. Posteriormente procedemos a crear el repositorio en github y crear la rama deploy para conectar el despliegue automático desde GitHub.

Una vez creado el repositorio en GitHub creamos la rama deploy.

En el dashboard principal de la aplicación HEROKU veremos desplegada la aplicación:

artefacto

Entramos dentro

git branch deploy
git checkout deploy
git push

Una vez creada la rama deployvamos a configurar el despliegue automático a Heroku desde GitHub, para ello entramos dentro del proyecto y seleccionamos la ventana Deploy:

deploy

Seleccionamos el método de despliegue como GitHub y conectamos el repositorio del proyecto en GitHub:

method

Una vez conectado el repositorio, seleccionamos la rama deployy habilitamos el despliegue automático:

enable_deploy

Con esto ya podemos desplegar nuestro servicio automáticamente cada vez que se haga un push de la rama deploy. Para ello, vamos a comprobarlo realizando el pushy situándonos en la pestaña de Activity del proyecto Heroku para ver el estado del despliegue:

despliegue_on

Una vez completado el despliegue, ya tendremos acceso a la app desde el botón Open app situado a la parte de arriba a la derecha:

completado

Con ello, ya tendríamos acceso a nuestra aplicación desplegada como un servicio dentro de Heroku:

comwebpletado

Conclusiones

Con este artículo, mi intención ha sido que puedan desplegar de forma exitosa este tipo de aplicaciones de manera sencilla y robusta para poder probar todas sus aplicaciones sin tener que preocuparse de toda la infraestructura IT de crear un servicio desde cero.

Espero que os haya sido de utilidad y que lo tengáis en cuenta como una herramienta más para el desarrollo de vuestras aplicaciones basadas en aprendizaje automático.

Owner
Jesùs Guillen
Jesùs Guillen
Mixing up the Invariant Information clustering architecture, with self supervised concepts from SimCLR and MoCo approaches

Self Supervised clusterer Combined IIC, and Moco architectures, with some SimCLR notions, to get state of the art unsupervised clustering while retain

Bendidi Ihab 9 Feb 13, 2022
To-Be is a machine learning challenge on CodaLab Platform about Mortality Prediction

To-Be is a machine learning challenge on CodaLab Platform about Mortality Prediction. The challenge aims to adress the problems of medical imbalanced data classification.

Marwan Mashra 1 Jan 31, 2022
Implementations of Machine Learning models, Regularizers, Optimizers and different Cost functions.

Linear Models Implementations of LinearRegression, LassoRegression and RidgeRegression with appropriate Regularizers and Optimizers. Linear Regression

Keivan Ipchi Hagh 1 Nov 22, 2021
ParaMonte is a serial/parallel library of Monte Carlo routines for sampling mathematical objective functions of arbitrary-dimensions

ParaMonte is a serial/parallel library of Monte Carlo routines for sampling mathematical objective functions of arbitrary-dimensions, in particular, the posterior distributions of Bayesian models in

Computational Data Science Lab 182 Dec 31, 2022
A machine learning toolkit dedicated to time-series data

tslearn The machine learning toolkit for time series analysis in Python Section Description Installation Installing the dependencies and tslearn Getti

2.3k Dec 29, 2022
This repository has datasets containing information of Uber pickups in NYC from April 2014 to September 2014 and January to June 2015. data Analysis , virtualization and some insights are gathered here

uber-pickups-analysis Data Source: https://www.kaggle.com/fivethirtyeight/uber-pickups-in-new-york-city Information about data set The dataset contain

B DEVA DEEKSHITH 1 Nov 03, 2021
Implementation of linesearch Optimization Algorithms in Python

Nonlinear Optimization Algorithms During my time as Scientific Assistant at the Karlsruhe Institute of Technology (Germany) I implemented various Opti

Paul 3 Dec 06, 2022
Predict the income for each percentile of the population (Python) - FRENCH

05.income-prediction Predict the income for each percentile of the population (Python) - FRENCH Effectuez une prédiction de revenus Prérequis Pour ce

1 Feb 13, 2022
A Lucid Framework for Transparent and Interpretable Machine Learning Models.

Currently a Beta-Version lucidmode is an open-source, low-code and lightweight Python framework for transparent and interpretable machine learning mod

lucidmode 15 Aug 12, 2022
Machine Learning approach for quantifying detector distortion fields

DistortionML Machine Learning approach for quantifying detector distortion fields. This project is a feasibility study for training a surrogate model

Joel Bernier 1 Nov 05, 2021
A simple python program that draws a tree for incrementing values using the Collatz Conjecture.

Collatz Conjecture A simple python program that draws a tree for incrementing values using the Collatz Conjecture. Values which can be edited: Length

davidgasinski 1 Oct 28, 2021
Turning images into '9-pan' palettes using KMeans clustering from sklearn.

img2palette Turning images into '9-pan' palettes using KMeans clustering from sklearn. Requirements We require: Pillow, for opening and processing ima

Samuel Vidovich 2 Jan 01, 2022
Python ML pipeline that showcases mltrace functionality.

mltrace tutorial Date: October 2021 This tutorial builds a training and testing pipeline for a toy ML prediction problem: to predict whether a passeng

Log Labs 28 Nov 09, 2022
Stats, linear algebra and einops for xarray

xarray-einstats Stats, linear algebra and einops for xarray ⚠️ Caution: This project is still in a very early development stage Installation To instal

ArviZ 30 Dec 28, 2022
Responsible Machine Learning with Python

Examples of techniques for training interpretable ML models, explaining ML models, and debugging ML models for accuracy, discrimination, and security.

ph_ 624 Jan 06, 2023
MiniTorch - a diy teaching library for machine learning engineers

This repo is the full student code for minitorch. It is designed as a single repo that can be completed part by part following the guide book. It uses

1.1k Jan 07, 2023
Given the names and grades for each student in a class N of students, store them in a nested list and print the name(s) of any student(s) having the second lowest grade.

Hackerank-Nested-List Given the names and grades for each student in a class N of students, store them in a nested list and print the name(s) of any s

Sangeeth Mathew John 2 Dec 14, 2021
This jupyter notebook project was completed by me and my friend using the dataset from Kaggle

ARM This jupyter notebook project was completed by me and my friend using the dataset from Kaggle. The world Happiness 2017, which ranks 155 countries

1 Jan 23, 2022
AtsPy: Automated Time Series Models in Python (by @firmai)

Automated Time Series Models in Python (AtsPy) SSRN Report Easily develop state of the art time series models to forecast univariate data series. Simp

Derek Snow 465 Jan 02, 2023
Pandas Machine Learning and Quant Finance Library Collection

Pandas Machine Learning and Quant Finance Library Collection

148 Dec 07, 2022