LILLIE: Information Extraction and Database Integration Using Linguistics and Learning-Based Algorithms

Overview

LILLIE: Information Extraction and Database Integration Using Linguistics and Learning-Based Algorithms

Based on the work by Smith et al. (2021)

Querying both structured and unstructured data via a single common query interface such as SQL or natural language has been a long standing research goal. Moreover, as methods for extracting information from unstructured data become ever more powerful, the desire to integrate the output of such extraction processes with "clean", structured data grows. We are convinced that for successful integration into databases, such extracted information in the form of "triples" needs to be both 1) of high quality and 2) have the necessary generality to link up with varying forms of structured data. It is the combination of both these aspects, which heretofore have been usually treated in isolation, where our approach breaks new ground.

The cornerstone of our work is a novel, generic method for extracting open information triples from unstructured text, using a combination of linguistics and learning-based extraction methods, thus uniquely balancing both precision and recall. Our system called LILLIE (LInked Linguistics and Learning-Based Information Extractor) uses dependency tree modification rules to refine triples from a high-recall learning-based engine, and combines them with syntactic triples from a high-precision engine to increase effectiveness. In addition, our system features several augmentations, which modify the generality and the degree of granularity of the output triples. Even though our focus is on addressing both quality and generality simultaneously, our new method substantially outperforms current state-of-the-art systems on the two widely-used CaRB and Re-OIE16 benchmark sets for information extraction.

Installation

Requires Python 3.6.9.

  1. pip install -r requirements.txt
  2. python3 -m spacy download en_core_web_md
  3. Clone ClausIE to ./learning_based/pyclausie (https://github.com/AnthonyMRios/pyclausie)
  4. Install with: cd ./learning_based/pyclausie python3 setup.py install
  5. Clone OpenIE5 to ./learning_based/OpenIE-Standalone (https://github.com/dair-iitd/OpenIE-standalone)
  6. Run OIE5 with: cd ./learning_based/OpenIE-standalone java -Xmx16g -jar openie-assembly-5.0-SNAPSHOT.jar --httpPort 9000
  7. Download Stanford CoreNLP Server 3.9.2 to ./rule_based/parser (https://stanfordnlp.github.io/CoreNLP/history.html)
  8. Run the parser: java -mx6g -cp "./rule_based/parser/*" edu.stanford.nlp.pipeline.StanfordCoreNLPServer -port 10000 -timeout 30000
  9. Run the learning-based extractor: python3 ./learning_based/paralleloie.py -i data/pubmedabstracts.json
  10. Run the rule-based extractor-refiner: python3 ./rule_based/extract_refine.py -i extracted_triples_learning.csv
The unified machine learning framework, enabling framework-agnostic functions, layers and libraries.

The unified machine learning framework, enabling framework-agnostic functions, layers and libraries. Contents Overview In a Nutshell Where Next? Overv

Ivy 8.2k Dec 31, 2022
Predict the output which should give a fair idea about the chances of admission for a student for a particular university

Predict the output which should give a fair idea about the chances of admission for a student for a particular university.

ArvindSandhu 1 Jan 11, 2022
Machine Learning Techniques using python.

👋 Hi, I’m Fahad from TEXAS TECH. 👀 I’m interested in Optimization / Machine Learning/ Statistics 🌱 I’m currently learning Machine Learning and Stat

FAHAD MOSTAFA 1 Jan 19, 2022
Machine Learning for Time-Series with Python.Published by Packt

Machine-Learning-for-Time-Series-with-Python Become proficient in deriving insights from time-series data and analyzing a model’s performance Links Am

Packt 124 Dec 28, 2022
This repo includes some graph-based CTR prediction models and other representative baselines.

Graph-based CTR prediction This is a repository designed for graph-based CTR prediction methods, it includes our graph-based CTR prediction methods: F

Big Data and Multi-modal Computing Group, CRIPAC 47 Dec 30, 2022
machine learning model deployment project of Iris classification model in a minimal UI using flask web framework and deployed it in Azure cloud using Azure app service

This is a machine learning model deployment project of Iris classification model in a minimal UI using flask web framework and deployed it in Azure cloud using Azure app service. We initially made th

Krishna Priyatham Potluri 73 Dec 01, 2022
A scikit-learn based module for multi-label et. al. classification

scikit-multilearn scikit-multilearn is a Python module capable of performing multi-label learning tasks. It is built on-top of various scientific Pyth

802 Jan 01, 2023
Solve automatic numerical differentiation problems in one or more variables.

numdifftools The numdifftools library is a suite of tools written in _Python to solve automatic numerical differentiation problems in one or more vari

Per A. Brodtkorb 181 Dec 16, 2022
Coursera Machine Learning - Python code

Coursera Machine Learning This repository contains python implementations of certain exercises from the course by Andrew Ng. For a number of assignmen

Jordi Warmenhoven 859 Dec 10, 2022
A library to generate synthetic time series data by easy-to-use factors and generator

timeseries-generator This repository consists of a python packages that generates synthetic time series dataset in a generic way (under /timeseries_ge

Nike Inc. 87 Dec 20, 2022
Adversarial Framework for (non-) Parametric Image Stylisation Mosaics

Fully Adversarial Mosaics (FAMOS) Pytorch implementation of the paper "Copy the Old or Paint Anew? An Adversarial Framework for (non-) Parametric Imag

Zalando Research 120 Dec 24, 2022
High performance implementation of Extreme Learning Machines (fast randomized neural networks).

High Performance toolbox for Extreme Learning Machines. Extreme learning machines (ELM) are a particular kind of Artificial Neural Networks, which sol

Anton Akusok 174 Dec 07, 2022
Formulae is a Python library that implements Wilkinson's formulas for mixed-effects models.

formulae formulae is a Python library that implements Wilkinson's formulas for mixed-effects models. The main difference with other implementations li

34 Dec 21, 2022
easyNeuron is a simple way to create powerful machine learning models, analyze data and research cutting-edge AI.

easyNeuron is a simple way to create powerful machine learning models, analyze data and research cutting-edge AI.

Neuron AI 5 Jun 18, 2022
Given the names and grades for each student in a class N of students, store them in a nested list and print the name(s) of any student(s) having the second lowest grade.

Hackerank-Nested-List Given the names and grades for each student in a class N of students, store them in a nested list and print the name(s) of any s

Sangeeth Mathew John 2 Dec 14, 2021
Uber Open Source 1.6k Dec 31, 2022
UpliftML: A Python Package for Scalable Uplift Modeling

UpliftML is a Python package for scalable unconstrained and constrained uplift modeling from experimental data. To accommodate working with big data, the package uses PySpark and H2O models as base l

Booking.com 254 Dec 31, 2022
A pure-python implementation of the UpSet suite of visualisation methods by Lex, Gehlenborg et al.

pyUpSet A pure-python implementation of the UpSet suite of visualisation methods by Lex, Gehlenborg et al. Contents Purpose How to install How it work

288 Jan 04, 2023
End to End toy example of MLOps

churn_model MLOps Toy Example End to End You might find below links useful Connect VSCode to Git MLFlow Port Heroku App Project Organization ├── LICEN

Ashish Tele 6 Feb 06, 2022
Predict the income for each percentile of the population (Python) - FRENCH

05.income-prediction Predict the income for each percentile of the population (Python) - FRENCH Effectuez une prédiction de revenus Prérequis Pour ce

1 Feb 13, 2022