Empyrial is a Python-based open-source quantitative investment library dedicated to financial institutions and retail investors

Overview

By Investors, For Investors.











Open In Colab


Want to read this in Chinese? Click here

Empyrial is a Python-based open-source quantitative investment library dedicated to financial institutions and retail investors, officially released in March 2021. Already used by thousands of people working in the finance industry, Empyrial aims to become an all-in-one platform for portfolio management, analysis, and optimization.

Empyrial empowers portfolio management by bringing the best of performance and risk analysis in an easy-to-understand, flexible and powerful framework.

With Empyrial, you can easily analyze security or a portfolio in order to get the best insights from it.



Installation

You can install Empyrial using pip:

pip install empyrial

For a better experience, we advise you to use Empyrial on a notebook (e.g., Jupyter, Google Colab)

Note: macOS users will need to install Xcode Command Line Tools.

Note: Windows users will need to install C++. (download, install instructions)

Features

Feature πŸ“° Status
Engine (backtesting + performance analysis) ⭐ Released on May 30, 2021
Optimizer ⭐ Released on Jun 7, 2021
Rebalancing ⭐ Released on Jun 27, 2021
Risk manager ⭐ Released on Jul 5, 2021
Sandbox ⭐ Released on Jul 17, 2021

Documentation

Full documentation (website)

Full documentation (PDF)

Usage

Empyrial Engine

from empyrial import empyrial, Engine

portfolio = Engine(
    start_date = "2018-06-09", 
    portfolio = ["BABA", "PDD", "KO", "AMD","^IXIC"], 
    weights = [0.2, 0.2, 0.2, 0.2, 0.2],  # equal weighting is set by default
    benchmark = ["SPY"]  # SPY is set by default
)

empyrial(portfolio)

Calendar Rebalancing

A portfolio can be rebalanced for either a specific time period or for specific dates using the rebalance option.

Rebalance for Time Period

Time periods available for rebalancing are 2y, 1y, 6mo, quarterly, monthly

from empyrial import empyrial, Engine

portfolio = Engine(
    start_date = "2018-06-09", 
    portfolio = ["BABA", "PDD", "KO", "AMD","^IXIC"], 
    weights = [0.2, 0.2, 0.2, 0.2, 0.2],  # equal weighting is set by default
    benchmark = ["SPY"],  # SPY is set by default
    rebalance = "1y"
)

empyrial(portfolio)

Rebalance for Custom Dates

You can rebalance a portfolio by specifying a list of custom dates.
⚠️ When using custom dates, the first date of the list must correspond with the start_date and the last element should correspond to the end_date which is today's date by default.

from empyrial import empyrial, Engine

portfolio = Engine(
    start_date = "2018-06-09", 
    portfolio = ["BABA", "PDD", "KO", "AMD","^IXIC"], 
    weights = [0.2, 0.2, 0.2, 0.2, 0.2],  # equal weighting is set by default
    benchmark = ["SPY"],  # SPY is set by default
    rebalance = ["2018-06-09", "2019-01-01", "2020-01-01", "2021-01-01"]
)

empyrial(portfolio)

Optimizer

The default optimizer is equal weighting. You can specify custom weights, if desired.

from empyrial import empyrial, Engine

portfolio = Engine(
    start_date = "2018-01-01",
    portfolio = ["BABA", "PDD", "KO", "AMD","^IXIC"], 
    weights = [0.1, 0.3, 0.15, 0.25, 0.2],   # custom weights
    rebalance = "1y"  # rebalance every year
)

empyrial(portfolio)

You can also use the built-in optimizers. There are 4 optimizers available:

  • "EF": Global Efficient Frontier Example
  • "MEANVAR": Mean-Variance Example
  • "HRP": Hierarchical Risk Parity Example
  • "MINVAR": Minimum-Variance Example
from empyrial import empyrial, Engine

portfolio = Engine(
    start_date = "2018-01-01",
    portfolio = ["BABA", "PDD", "KO", "AMD","^IXIC"],
    optimizer = "EF",
    rebalance = "1y"  # rebalance every year
)

portfolio.weights

Output:

[0.0, 0.0, 0.0348, 0.9652, 0.0]

We can see that the allocation has been optimized.

Risk Manager

3 Risk Managers are available:

  • Max Drawdown: {"Max Drawdown" : -0.3} Example
  • Take Profit: {"Take Profit" : 0.4} Example
  • Stop Loss: {"Stop Loss" : -0.2} Example
from empyrial import empyrial, Engine

portfolio = Engine(
    start_date = "2018-01-01",
    portfolio= ["BABA", "PDD", "KO", "AMD","^IXIC"], 
    optimizer = "EF",
    rebalance = "1y",  # rebalance every year
    risk_manager = {"Max Drawdown" : -0.2}  # Stop the investment when the drawdown becomes superior to -20%
)

empyrial(portfolio)

Empyrial Outputs

image image image image image image image image image image image

Download the Tearsheet

You can use the get_report() function of Empyrial to generate a tearsheet, and then download this as a PDF document.

from empyrial import get_report, Engine

portfolio = Engine(
      start_date = "2018-01-01",
      portfolio = ["BABA", "PDD", "KO", "AMD","^IXIC"],
      optimizer = "EF",
      rebalance = "1y", #rebalance every year
      risk_manager = {"Stop Loss" : -0.2}
)

get_report(portfolio)

Output:

image

Stargazers over time

θΏ½ζ˜Ÿζ—ηš„ζ—Άι—΄

Contribution and Issues

Empyrial uses GitHub to host its source code. Learn more about the Github flow.

For larger changes (e.g., new feature request, large refactoring), please open an issue to discuss first.

Smaller improvements (e.g., document improvements, bugfixes) can be handled by the Pull Request process of GitHub: pull requests.

  • To contribute to the code, you will need to do the following:

  • Fork Empyrial - Click the Fork button at the upper right corner of this page.

  • Clone your own fork. E.g., git clone https://github.com/ssantoshp/Empyrial.git
    If your fork is out of date, then will you need to manually sync your fork: Synchronization method

  • Create a Pull Request using your fork as the compare head repository.

You contributions will be reviewed, potentially modified, and hopefully merged into Empyrial.

Contributors

Thanks goes to these wonderful people (emoji key):

All Contributors


Brendan Glancy

πŸ’» πŸ›

Renan Lopes

πŸ’» πŸ›

Mark Thebault

πŸ’»

Diego Alvarez

πŸ’» πŸ›

Rakesh Bhat

πŸ’»

Anh Le

πŸ›

Tony Zhang

πŸ’»

Ikko Ashimine

βœ’οΈ

QuantNomad

πŸ“Ή

Buckley

βœ’οΈ πŸ’»

Adam Nelsson

πŸ““

This project follows the all-contributors specification. Contributions of any kind are welcome!

Contact

You are welcome to contact us by email at [email protected] or in Empyrial's discussion space

License

MIT

Comments
  • Issue with Pandas datareader

    Issue with Pandas datareader

    Describe the bug This seems to effect all your branches

    RemoteDataError Traceback (most recent call last) in ----> 1 oracle(portfolio)

    ~/anaconda3/envs/empyr/lib/python3.8/site-packages/empyrial.py in oracle(my_portfolio, prediction_days, based_on) 334 335 --> 336 df = web.DataReader(asset, data_source='yahoo', start = my_portfolio.start_date, end= my_portfolio.end_date) 337 df = pd.DataFrame(df) 338 df.reset_index(level=0, inplace=True)

    ~/anaconda3/envs/empyr/lib/python3.8/site-packages/pandas/util/_decorators.py in wrapper(*args, **kwargs) 197 else: 198 kwargs[new_arg_name] = new_arg_value --> 199 return func(*args, **kwargs) 200 201 return cast(F, wrapper)

    ~/anaconda3/envs/empyr/lib/python3.8/site-packages/pandas_datareader/data.py in DataReader(name, data_source, start, end, retry_count, pause, session, api_key) 374 375 if data_source == "yahoo": --> 376 return YahooDailyReader( 377 symbols=name, 378 start=start,

    ~/anaconda3/envs/empyr/lib/python3.8/site-packages/pandas_datareader/base.py in read(self) 251 # If a single symbol, (e.g., 'GOOG') 252 if isinstance(self.symbols, (string_types, int)): --> 253 df = self._read_one_data(self.url, params=self._get_params(self.symbols)) 254 # Or multiple symbols, (e.g., ['GOOG', 'AAPL', 'MSFT']) 255 elif isinstance(self.symbols, DataFrame):

    ~/anaconda3/envs/empyr/lib/python3.8/site-packages/pandas_datareader/yahoo/daily.py in _read_one_data(self, url, params) 151 url = url.format(symbol) 152 --> 153 resp = self._get_response(url, params=params) 154 ptrn = r"root.App.main = (.*?);\n}(this));" 155 try:

    ~/anaconda3/envs/empyr/lib/python3.8/site-packages/pandas_datareader/base.py in _get_response(self, url, params, headers) 179 msg += "\nResponse Text:\n{0}".format(last_response_text) 180 --> 181 raise RemoteDataError(msg) 182 183 def _get_crumb(self, *args):

    RemoteDataError: Unable to read URL: https://finance.yahoo.com/quote/BABA/history?period1=1591671600&period2=1625972399&interval=1d&frequency=1d&filter=history Response Text: b'\n \n \n \n Yahoo\n \n \n \n \n \n \n \n \n

    \n \n \n \n
    \n Yahoo Logo\n

    Will be right back...

    \n

    Thank you for your patience.

    \n

    Our engineers are working quickly to resolve the issue.

    \n
    \n '

    1

    opened by geofffoster 8
  • Failed to build scs ERROR: Could not build wheels for scs which use PEP 517 and cannot be installed directly

    Failed to build scs ERROR: Could not build wheels for scs which use PEP 517 and cannot be installed directly

    I am using Python 3.8.10. I had a separate environment and I got the following error when pip installing empyrial Failed to build scs ERROR: Could not build wheels for scs which use PEP 517 and cannot be installed directly

    From this link https://github.com/pydata/bottleneck/issues/281 I tried pip install --upgrade pip setuptools wheel but I am still getting the same bug when installing empyrial.

    • OS: Ubuntu 20.04
    • mini conda version and a separate environment for trading
    • Python 3.8.10
    • Let me know if there is any way around this bug. Thanks
    opened by gurusura 8
  • RemoteDataError: No data fetched using 'YahooDailyReader'

    RemoteDataError: No data fetched using 'YahooDailyReader'

    Discussed in https://github.com/ssantoshp/Empyrial/discussions/27

    Originally posted by karim1104 July 3, 2021 Starting July 1, I'm getting the error "RemoteDataError: No data fetched using 'YahooDailyReader'". I've tried it in different Python environments (3.6, 3.8, 3.9). It seems like a Pandas DataReader issue (https://github.com/pydata/pandas-datareader/issues/868) How can we resolve this? I have a subscription to FMP, is there a way I use instead of Yahoo Finance?

    opened by ssantoshp 6
  • Error when rebalancing with only one stock

    Error when rebalancing with only one stock

    Hi, I have tried to reproduce test results and simulated one single stock over time by forcing the weight distribution as shown below: tickers = ["stock1", "stock2"] weights_new_ = [1.0, 0.0] no optimizer is used, so just using the quantstats calculations of ratios and returns. In the next example, we do the same but with a yearly rebalancer. The thing here is that the results should be exactly the same. There seems to be a slight error in the returns calculations over time, which turns out to be bigger with more rebalancing.

    I will have some more look at it, and update if I find the bug. Btw great work!

    opened by atobiese 5
  • Unlisted Stock Symbol Counted in Pie Chart

    Unlisted Stock Symbol Counted in Pie Chart

    Hi , awesome tool santosh bhai. If a ticker symbol data is not listed at the time of the start date , it stills counts the ticker in the pie chart portfolio. Ideally it should not .. or am i getting this wrong. very new guy. regards ,

    opened by lawzeus 5
  • get_report error

    get_report error

    Describe the bug the sample code (as per --> https://empyrial.gitbook.io/empyrial/save-the-tearsheet/get-a-report) is throwing an error

    To Reproduce Steps to reproduce the behavior:

    1. Go to 'https://empyrial.gitbook.io/empyrial/save-the-tearsheet/get-a-report...'
    2. Run the sample code
    3. Scroll down to '....'
    4. See error

    NameError Traceback (most recent call last) /var/folders/41/q1hx0rjd5xzck1vl121t6b2m0000gn/T/ipykernel_11664/2518190224.py in 10 empyrial(portfolio) 11 ---> 12 get_report(portfolio)

    NameError: name 'get_report' is not defined

    Expected behavior A clear and concise description of what you expected to happen.

    Screenshots If applicable, add screenshots to help explain your problem.

    Desktop (please complete the following information):

    • OS: [e.g. iOS]
    • Browser [e.g. chrome, safari]
    • Version [e.g. 22]

    Additional context using jypiterlab notebook

    opened by lawzeus 5
  • Support for custom data, or data from other exchanges

    Support for custom data, or data from other exchanges

    Is your feature request related to a problem? Please describe. I want to analyze portfolio in other exchanges.

    Describe the solution you'd like Ability to provide other exchange data.

    opened by suvojit-0x55aa 4
  • Error when running fundlens

    Error when running fundlens

    Anaconda3\lib\site-packages\empyrial.py", line 610, in fundlens ['Dividend yield', yahoo_financials.get_dividend_yield()], ['Payout ratio', yahoo_financials.get_payout_ratio()], ['Controversy', controversy], ['Social score', social_score],

    UnboundLocalError: local variable 'controversy' referenced before assignment

    opened by jaredre 4
  • rebalance has a bug

    rebalance has a bug

    When you set up quarterly rebalance with only one ticker, the strategy and benchmark show different values. This is a bug. They should be completely equal.

    The codebase below reproduces the issue. The EOY returns and the timeseries plot of Cumulative returns vs benchmark show that the strategy and benchmark are divergent.

    from empyrial import empyrial, Engine portfolio = Engine(
    start_date= "2021-01-01", portfolio= ["BTC-USD", "GOOG"], weights = [1, 0.], #equal weighting is set by default benchmark = ["BTC-USD"], #SPY is set by default rebalance = 'quarterly' ) empyrial(portfolio)

    opened by rgleavenworth 3
  • Graph styling

    Graph styling

    Is there a way to override the default styling parameters used in your tearsheet? I understand that most of the styling is inherited from quantstats. Anyway you can suggest how to change things like facecolor, linewidth, etc?

    opened by rgleavenworth 3
  • EM Optimizer fails if benchmark changed to Nifty50  (yahoo ticker used

    EM Optimizer fails if benchmark changed to Nifty50 (yahoo ticker used "^NSEI")

    Describe the bug The EM optimiser fails when the default benchmark is altered to Nifty .

    However if the default is restored it works .

    To Reproduce Steps to reproduce the behavior : use this code "from empyrial import empyrial, Engine

    portfolio = Engine(
    start_date= "2015-01-01", #start date for the backtesting portfolio= ["TCS.NS", "INFY.NS", "HDFC.NS", "KOTAKBANK.NS","TITAN.NS","NESTLEIND.NS"], #assets in your portfolio benchmark = ["NSEI"] optimizer = "EF" ) empyrial(portfolio)"

    Expected behavior error message " File "/var/folders/41/q1hx0rjd5xzck1vl121t6b2m0000gn/T/ipykernel_2924/1251204071.py", line 7 optimizer = "EF" ^ SyntaxError: invalid syntax

    Screenshots If applicable, add screenshots to help explain your problem.

    Desktop (please complete the following information):

    • OS: MacOsx
    • Browser Chrome
    • jupyter

    Additional context Add any other context about the problem here.

    opened by lawzeus 3
  • assets value / non-stock based portfolio?

    assets value / non-stock based portfolio?

    Wondering if Empyrial can be used with a non-stock based portfolio. The example in the docs is like this:

    from empyrial import empyrial, Engine portfolio = Engine(
    start_date= "2018-06-09", portfolio= ["BABA", "PDD", "KO", "AMD","^IXIC"], weights = [0.2, 0.2, 0.2, 0.2, 0.2], #equal weighting is set by default benchmark = ["SPY"] #SPY is set by default ) empyrial(portfolio)

    Is there any alternate way to define a portfolio, not as a list of stocks / weights but based on the value of the assets in the account?

    opened by andrew521 2
  • str and Timestamp error

    str and Timestamp error

    The code:

    from empyrial import empyrial, Engine
    portfolio = Engine(
                      start_date= "2021-01-01", #start date for the backtesting
                      end_date= "2022-05-01",
                      portfolio= tickers[:], #assets in your portfolio
                      weights = w2[:],
                      benchmark=["XU100.IS"]
    )
    print(empyrial(portfolio))
    print(portfolio)
    

    It gives an error like below.

    TypeError Traceback (most recent call last) ~\AppData\Local\Temp/ipykernel_10148/966461475.py in 11 ) 12 ---> 13 print(empyrial(portfolio)) 14 print(portfolio)

    ~\AppData\Roaming\Python\Python39\site-packages\empyrial.py in empyrial(my_portfolio, rf, sigma_value, confidence_value) 304 empyrial.SR = SR 305 --> 306 CR = qs.stats.calmar(returns) 307 CR = CR.tolist() 308 CR = str(round(CR, 2))

    ~\AppData\Roaming\Python\Python39\site-packages\quantstats\stats.py in calmar(returns, prepare_returns) 547 if prepare_returns: 548 returns = _utils._prepare_returns(returns) --> 549 cagr_ratio = cagr(returns) 550 max_dd = max_drawdown(returns) 551 return cagr_ratio / abs(max_dd)

    ~\AppData\Roaming\Python\Python39\site-packages\quantstats\stats.py in cagr(returns, rf, compounded) 500 total = _np.sum(total) 501 --> 502 years = (returns.index[-1] - returns.index[0]).days / 365. 503 504 res = abs(total + 1.0) ** (1.0 / years) - 1

    TypeError: unsupported operand type(s) for -: 'str' and 'Timestamp'

    opened by burakgulmez 1
Releases(v1.9.8)
Owner
Santosh
The 17-year-old not so part-time coder
Santosh
MiniTorch - a diy teaching library for machine learning engineers

This repo is the full student code for minitorch. It is designed as a single repo that can be completed part by part following the guide book. It uses

1.1k Jan 07, 2023
SIMD-accelerated bitwise hamming distance Python module for hexidecimal strings

hexhamming What does it do? This module performs a fast bitwise hamming distance of two hexadecimal strings. This looks like: DEADBEEF = 1101111010101

Michael Recachinas 12 Oct 14, 2022
MLOps pipeline project using Amazon SageMaker Pipelines

This project shows steps to build an end to end MLOps architecture that covers data prep, model training, realtime and batch inference, build model registry, track lineage of artifacts and model drif

AWS Samples 3 Sep 16, 2022
A simple python program which predicts the success of a movie based on it's type, actor, actress and director

Movie-Success-Prediction A simple python program which predicts the success of a movie based on it's type, actor, actress and director. The program us

Mahalinga Prasad R N 1 Dec 17, 2021
Bonsai: Gradient Boosted Trees + Bayesian Optimization

Bonsai is a wrapper for the XGBoost and Catboost model training pipelines that leverages Bayesian optimization for computationally efficient hyperparameter tuning.

24 Oct 27, 2022
This is a curated list of medical data for machine learning

Medical Data for Machine Learning This is a curated list of medical data for machine learning. This list is provided for informational purposes only,

Andrew L. Beam 5.4k Dec 26, 2022
ThunderGBM: Fast GBDTs and Random Forests on GPUs

Documentations | Installation | Parameters | Python (scikit-learn) interface What's new? ThunderGBM won 2019 Best Paper Award from IEEE Transactions o

Xtra Computing Group 648 Dec 16, 2022
The Ultimate FREE Machine Learning Study Plan

The Ultimate FREE Machine Learning Study Plan

Patrick Loeber (Python Engineer) 2.5k Jan 05, 2023
Distributed deep learning on Hadoop and Spark clusters.

Note: we're lovingly marking this project as Archived since we're no longer supporting it. You are welcome to read the code and fork your own version

Yahoo 1.3k Dec 28, 2022
pymc-learn: Practical Probabilistic Machine Learning in Python

pymc-learn: Practical Probabilistic Machine Learning in Python Contents: Github repo What is pymc-learn? Quick Install Quick Start Index What is pymc-

pymc-learn 196 Dec 07, 2022
Predict profitability of trades based on indicator buy / sell signals

Predict profitability of trades based on indicator buy / sell signals Trade profitability analysis for trades based on various indicators signals: MAC

Tomasz Porzycki 1 Dec 15, 2021
LibTraffic is a unified, flexible and comprehensive traffic prediction library based on PyTorch

LibTraffic is a unified, flexible and comprehensive traffic prediction library, which provides researchers with a credibly experimental tool and a convenient development framework. Our library is imp

432 Jan 05, 2023
SmartSim makes it easier to use common Machine Learning (ML) libraries like PyTorch and TensorFlow

SmartSim makes it easier to use common Machine Learning (ML) libraries like PyTorch and TensorFlow, in High Performance Computing (HPC) simulations and workloads.

Flightfare-Prediction - It is a Flightfare Prediction Web Application Using Machine learning,Python and flask

Flight_fare-Prediction It is a Flight_fare Prediction Web Application Using Machine learning,Python and flask Using Machine leaning i have created a F

1 Dec 06, 2022
Mars is a tensor-based unified framework for large-scale data computation which scales numpy, pandas, scikit-learn and Python functions.

Mars is a tensor-based unified framework for large-scale data computation which scales numpy, pandas, scikit-learn and many other libraries. Documenta

2.5k Jan 07, 2023
Katana project is a template for ASAP πŸš€ ML application deployment

Katana project is a FastAPI template for ASAP πŸš€ ML API deployment

Mohammad Shahebaz 100 Dec 26, 2022
This machine-learning algorithm takes in data from the last 60 days and tries to predict tomorrow's price of any crypto you ask it.

Crypto-Currency-Predictor This machine-learning algorithm takes in data from the last 60 days and tries to predict tomorrow's price of any crypto you

Hazim Arafa 6 Dec 04, 2022
Metric learning algorithms in Python

metric-learn: Metric Learning in Python metric-learn contains efficient Python implementations of several popular supervised and weakly-supervised met

1.3k Dec 28, 2022
High performance implementation of Extreme Learning Machines (fast randomized neural networks).

High Performance toolbox for Extreme Learning Machines. Extreme learning machines (ELM) are a particular kind of Artificial Neural Networks, which sol

Anton Akusok 174 Dec 07, 2022
This jupyter notebook project was completed by me and my friend using the dataset from Kaggle

ARM This jupyter notebook project was completed by me and my friend using the dataset from Kaggle. The world Happiness 2017, which ranks 155 countries

1 Jan 23, 2022