Simulate & classify transient absorption spectroscopy (TAS) spectral features for bulk semiconducting materials (Post-DFT)

Overview

PyTASER

PyTASER is a Python (3.9+) library and set of command-line tools for classifying spectral features in bulk materials, post-DFT. The goal of this library is to provide qualitative comparisons for experimental TAS spectra - a complex and tedious process, especially for pristine materials. The main features include:

  • An interactive TAS spectrum for a pristine semiconducting material
  • Isolating spectra for individual band transitions from the overall TAS spectrum for the material.
  • Spectra in different conditions: temperature, carrier concentrations (analogous to pump-probe time delay)
  • Identifying partial occupancies of valence and conduction bands, using the Fermi-Dirac distribution for different Quasi-Fermi levels.
  • Considers both non-magnetic and magnetic materials.
  • Taking DFT-calculated bandstructure and dos inputs, with primary support for the Materials Project.

Installation

The recommended way to install PyTASER is in a conda environment.

Installation method to be updated here

PyTASER is currently compatible with Python 3.9+ and relies on a number of open-source python packages, specifically:

Visualisation

Once the library is installed, please setup a file as done in the examples provided. Then just run it as a python file:

python3 filename.py

Contributing

The library is currently undergoing some final changes before it is finalised. However, once it is completed, we would greatly appreciate any contributions in the form of a pull request. Additionally, any test cases/example spectra performed with PyTASER would be welcomed.

Future topics we'd like to build on:

  • Converting between carrier concentrations and pump-probe time delay (for a more quantitative analysis)
  • Incorporating spin-change processes (e.g. moving from Spin.up to Spin.down and vice-versa) for spin-polarised systems
  • Incorporating finite-temperature effects (particularly with indirect bandgaps and phonons, and defects)
  • Incorporating more complex optical processes (e.g. Stimulated Emissions)
  • Cleaning the regions further away from the bandgap
  • Implementing the optical transition probabilities alongside the JDOS
  • Creating a kinetics plot for TAS analysis.
  • Relating spectral features with associated optical processes

Acknowledgements

Developed by Savyasanchi Aggarwal, Alex Ganose and Liam Harnett-Caulfield. Aron Walsh designed and led the project.

Thanks to the WMD group @ Imperial/Yonsei for all the interesting discussions and improvements!

Owner
Materials Design Group
Research group in computational chemistry & physics led by @aronwalsh
Materials Design Group
Kats is a toolkit to analyze time series data, a lightweight, easy-to-use, and generalizable framework to perform time series analysis.

Kats, a kit to analyze time series data, a lightweight, easy-to-use, generalizable, and extendable framework to perform time series analysis, from understanding the key statistics and characteristics

Facebook Research 4.1k Dec 29, 2022
PyNNDescent is a Python nearest neighbor descent for approximate nearest neighbors.

PyNNDescent PyNNDescent is a Python nearest neighbor descent for approximate nearest neighbors. It provides a python implementation of Nearest Neighbo

Leland McInnes 699 Jan 09, 2023
A game theoretic approach to explain the output of any machine learning model.

SHAP (SHapley Additive exPlanations) is a game theoretic approach to explain the output of any machine learning model. It connects optimal credit allo

Scott Lundberg 18.2k Jan 02, 2023
A model to predict steering torque fully end-to-end

torque_model The torque model is a spiritual successor to op-smart-torque, which was a project to train a neural network to control a car's steering f

Shane Smiskol 4 Jun 03, 2022
A GitHub action that suggests type annotations for Python using machine learning.

Typilus: Suggest Python Type Annotations A GitHub action that suggests type annotations for Python using machine learning. This action makes suggestio

40 Sep 18, 2022
Factorization machines in python

Factorization Machines in Python This is a python implementation of Factorization Machines [1]. This uses stochastic gradient descent with adaptive re

Corey Lynch 892 Jan 03, 2023
Bonsai: Gradient Boosted Trees + Bayesian Optimization

Bonsai is a wrapper for the XGBoost and Catboost model training pipelines that leverages Bayesian optimization for computationally efficient hyperparameter tuning.

24 Oct 27, 2022
TensorFlowOnSpark brings TensorFlow programs to Apache Spark clusters.

TensorFlowOnSpark TensorFlowOnSpark brings scalable deep learning to Apache Hadoop and Apache Spark clusters. By combining salient features from the T

Yahoo 3.8k Jan 04, 2023
A repository to work on Machine Learning course. Select an algorithm to classify writer's gender, of Hebrew texts.

MachineLearning A repository to work on Machine Learning course. Select an algorithm to classify writer's gender, of Hebrew texts. Tested algorithms:

Haim Adrian 1 Feb 01, 2022
vortex particles for simulating smoke in 2d

vortex-particles-method-2d vortex particles for simulating smoke in 2d -vortexparticles_s

12 Aug 23, 2022
Reproducibility and Replicability of Web Measurement Studies

Reproducibility and Replicability of Web Measurement Studies This repository holds additional material to the paper "Reproducibility and Replicability

6 Dec 31, 2022
cleanlab is the data-centric ML ops package for machine learning with noisy labels.

cleanlab is the data-centric ML ops package for machine learning with noisy labels. cleanlab cleans labels and supports finding, quantifying, and lear

Cleanlab 51 Nov 28, 2022
Mixing up the Invariant Information clustering architecture, with self supervised concepts from SimCLR and MoCo approaches

Self Supervised clusterer Combined IIC, and Moco architectures, with some SimCLR notions, to get state of the art unsupervised clustering while retain

Bendidi Ihab 9 Feb 13, 2022
This project impelemented for midterm of the Machine Learning #Zoomcamp #Alexey Grigorev

MLProject_01 This project impelemented for midterm of the Machine Learning #Zoomcamp #Alexey Grigorev Context Dataset English question data set file F

Hadi Nakhi 1 Dec 18, 2021
PyCaret is an open-source, low-code machine learning library in Python that automates machine learning workflows.

An open-source, low-code machine learning library in Python šŸš€ Version 2.3.5 out now! Check out the release notes here. Official • Docs • Install • Tu

PyCaret 6.7k Jan 08, 2023
Mortality risk prediction for COVID-19 patients using XGBoost models

Mortality risk prediction for COVID-19 patients using XGBoost models Using demographic and lab test data received from the HM Hospitales in Spain, I b

1 Jan 19, 2022
distfit - Probability density fitting

Python package for probability density function fitting of univariate distributions of non-censored data

Erdogan Taskesen 187 Dec 30, 2022
Machine Learning Techniques using python.

šŸ‘‹ Hi, I’m Fahad from TEXAS TECH. šŸ‘€ I’m interested in Optimization / Machine Learning/ Statistics 🌱 I’m currently learning Machine Learning and Stat

FAHAD MOSTAFA 1 Jan 19, 2022
Lseng-iseng eksplor Machine Learning dengan menggunakan library Scikit-Learn

Kalo dengar istilah ML, biasanya rada ambigu. Soalnya punya beberapa kepanjangan, seperti Mobile Legend, Makan Lontong, Ma**ng L*v* dan lain-lain. Tapi pada repo ini membahas Machine Learning :)

Alfiyanto Kondolele 1 Apr 06, 2022
A collection of neat and practical data science and machine learning projects

Data Science A collection of neat and practical data science and machine learning projects Explore the docs Ā» Report Bug Ā· Request Feature Table of Co

Will Fong 2 Dec 10, 2021